Scheme for parity-controlled multi-qubit gates with superconducting qubits

Multi-qubit parity measurements are at the core of many quantum error correction schemes. Extracting multi-qubit parity information typically involves using a sequence of multiple two-qubit gates. In this paper, we propose a superconducting circuit device with native support for multi-qubit parity-controlled gates (PCG). These are gates that perform rotations on a parity ancilla based on the multi-qubit parity operator of adjacent qubits, and can be directly used to perform multi-qubit parity measurements. The circuit consists of a set of concatenated Josephson ring modulators and effectively realizes a set of transmon-like qubits with strong longitudinal nearest-neighbor couplings. PCGs are implemented by applying microwave drives to the parity ancilla at specific frequencies. We investigate the scheme's performance with numerical simulation using realistic parameter choices and decoherence rates, and find that the device can perform four-qubit PCGs in 30 ns with process fidelity surpassing 99%. Furthermore, we study the effects of parameter disorder and spurious coupling between next-nearest neighboring qubits. Our results indicate that this approach to realizing PCGs constitute an interesting candidate for near-term quantum error correction experiments.

[1]  Michael J. Hoffmann,et al.  Suppressing quantum errors by scaling a surface code logical qubit , 2022, Nature.

[2]  Benjamin E. Niehoff,et al.  Parity Quantum Optimization: Compiler , 2021, Quantum.

[3]  Christopher N. Warren,et al.  Extensive characterization of a family of efficient three-qubit gates at the coherence limit , 2022, 2207.02938.

[4]  Yu Song,et al.  Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds , 2022, npj Quantum Information.

[5]  N. S. Blunt,et al.  Multi-qubit entanglement and algorithms on a neutral-atom quantum computer , 2021, Nature.

[6]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[7]  F. Schmidt-Kaler,et al.  Fault-Tolerant Parity Readout on a Shuttling-Based Trapped-Ion Quantum Computer , 2021, Physical Review X.

[8]  K. O’Brien,et al.  Engineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quarton. , 2021, Physical review letters.

[9]  B. Neyenhuis,et al.  Realization of Real-Time Fault-Tolerant Quantum Error Correction , 2021, Physical Review X.

[10]  A. Houck,et al.  Moving beyond the Transmon: Noise-Protected Superconducting Quantum Circuits , 2021, PRX Quantum.

[11]  D. McKay,et al.  Hamiltonian Engineering with Multicolor Drives for Fast Entangling Gates and Quantum Crosstalk Cancellation. , 2021, Physical review letters.

[12]  M. Lukin,et al.  Probing topological spin liquids on a programmable quantum simulator , 2021, Science.

[13]  A. Houck,et al.  Experimental Realization of a Protected Superconducting Circuit Derived from the 0 – π Qubit , 2021 .

[14]  K. S. Christensen,et al.  Superconducting Circuit Companion—an Introduction with Worked Examples , 2021, PRX Quantum.

[15]  M. Steffen,et al.  Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits. , 2021, Physical review letters.

[16]  Benjamin J. Brown,et al.  The XZZX surface code , 2020, Nature Communications.

[17]  R. Schouten,et al.  A four-qubit germanium quantum processor , 2020, Nature.

[18]  L. DiCarlo,et al.  High-Fidelity Controlled-Z Gate with Maximal Intermediate Leakage Operating at the Speed Limit in a Superconducting Quantum Processor. , 2020, Physical review letters.

[19]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.

[20]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[21]  A. Greene,et al.  Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler , 2020, 2011.01261.

[22]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[23]  C. Marcus,et al.  A Parity-Protected Superconductor-Semiconductor Qubit , 2020, 2004.03975.

[24]  D. Bacon,et al.  Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. , 2020, Physical review letters.

[25]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[26]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[27]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[28]  W. Hsieh,et al.  Bifluxon: Fluxon-Parity-Protected Superconducting Qubit , 2019, 1910.03769.

[29]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[30]  Joschka Roffe,et al.  Quantum error correction: an introductory guide , 2019, Contemporary Physics.

[31]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[32]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[33]  Fei Yan,et al.  Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates , 2018, Physical Review Applied.

[34]  N. Langford,et al.  Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit , 2018, npj Quantum Information.

[35]  A. Blais,et al.  Qubit parity measurement by parametric driving in circuit QED , 2018, Science Advances.

[36]  A. Houck,et al.  Coherence properties of the 0-π qubit , 2017, 1708.02886.

[37]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[38]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[39]  Naomi H. Nickerson,et al.  Error correcting power of small topological codes , 2016, 1609.01753.

[40]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[41]  Andrew W. Cross,et al.  Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System. , 2016, Physical review letters.

[42]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[43]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[44]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[45]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[46]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[47]  Baleegh Abdo,et al.  Nondegenerate three-wave mixing with the Josephson ring modulator , 2012, 1208.3142.

[48]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[49]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[50]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[51]  M. Ben-Or,et al.  Fault-Tolerant Quantum Computation with Constant Error Rate , 1996, SIAM J. Comput..

[52]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[53]  D. James,et al.  Effective Hamiltonian theory and its applications in quantum information , 2007, 0706.1090.

[54]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[55]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[56]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[57]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[58]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[59]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[60]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[61]  Forschungszentrum Juelich,et al.  Lattice Gauge Theory - A short Primer , 2000, hep-lat/0012005.

[62]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[63]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[64]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[65]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[66]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .