Petersen Cores and the Oddness of Cubic Graphs
暂无分享,去创建一个
[1] Jonas Hägglund. On Snarks that are far from being 3-Edge Colorable , 2016, Electron. J. Comb..
[2] Roman Nedela,et al. Decompositions and reductions of snarks , 1996 .
[3] Peter J. Cameron,et al. Decomposition of snarks , 1987, J. Graph Theory.
[4] André Raspaud,et al. Fulkerson's Conjecture and Circuit Covers , 1994, J. Comb. Theory, Ser. B.
[5] R. Isaacs. Infinite Families of Nontrivial Trivalent Graphs Which are not Tait Colorable , 1975 .
[6] Edita Mácajová,et al. Sparsely intersecting perfect matchings in cubic graphs , 2014, Comb..
[7] Edita Mácajová,et al. Small Snarks with Large Oddness , 2015, Electron. J. Comb..
[8] Eckhard Steffen,et al. Intersecting 1-factors and nowhere-zero 5-flows , 2013, Comb..
[9] J. Petersen. Die Theorie der regulären graphs , 1891 .
[10] Alfred Weiss. Girths of bipartite sextet graphs , 1984, Comb..
[11] Giuseppe Mazzuoccolo,et al. On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings , 2013 .
[12] Eckhard Steffen,et al. Classifications and characterizations of snarks , 1998, Discret. Math..
[13] Eckhard Steffen. 1-Factor and Cycle Covers of Cubic Graphs , 2015, J. Graph Theory.
[14] Mark K. Goldberg,et al. Construction of class 2 graphs with maximum vertex degree 3 , 1981, J. Comb. Theory, Ser. B.