Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation

Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled and test images are only loosely controlled. We propose a conceptually simple face recognition system that achieves a high degree of robustness and stability to illumination variation, image misalignment, and partial occlusion. The system uses tools from sparse representation to align a test face image to a set of frontal training images. The region of attraction of our alignment algorithm is computed empirically for public face data sets such as Multi-PIE. We demonstrate how to capture a set of training images with enough illumination variation that they span test images taken under uncontrolled illumination. In order to evaluate how our algorithms work under practical testing conditions, we have implemented a complete face recognition system, including a projector-based training acquisition system. Our system can efficiently and effectively recognize faces under a variety of realistic conditions, using only frontal images under the proposed illuminations as training.

[1]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[2]  L. Cromme Strong uniqueness , 1978 .

[3]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  M. R. Osborne,et al.  Strong uniqueness and second order convergence in nonlinear discrete approximation , 1980 .

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  M. R. Osborne,et al.  Strong uniqueness in sequential linear programming , 1990, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  Timothy F. Cootes,et al.  Active Shape Models - 'smart snakes' , 1992, BMVC.

[11]  C. Taylor,et al.  Active shape models - 'Smart Snakes'. , 1992 .

[12]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[14]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[15]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[16]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[17]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[18]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Philip Dutré,et al.  The free-form light stage , 2002, SIGGRAPH '02.

[21]  Li Zhang,et al.  Rapid shape acquisition using color structured light and multi-pass dynamic programming , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[22]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[24]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[25]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[26]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Andrew Gardner,et al.  Performance geometry capture for spatially varying relighting , 2005, SIGGRAPH '05.

[28]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[29]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[30]  Ralph Gross,et al.  Active appearance models with occlusion , 2006, Image Vis. Comput..

[31]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..

[32]  Dorin Comaniciu,et al.  Total variation models for variable lighting face recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 large-scale results , 2007 .

[35]  Rama Chellappa,et al.  Appearance Characterization of Linear Lambertian Objects, Generalized Photometric Stereo, and Illumination-Invariant Face Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Shree K. Nayar,et al.  Multiplexing for Optimal Lighting , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Andrew W. Fitzgibbon,et al.  Reconstructing High Quality Face-Surfaces using Model Based Stereo , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Junzhou Huang,et al.  Simultaneous image transformation and sparse representation recovery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[40]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[41]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[42]  Hossein Mobahi,et al.  Face recognition with contiguous occlusion using markov random fields , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[43]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[44]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[45]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[46]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Jun Guo,et al.  Robust, accurate and efficient face recognition from a single training image: A uniform pursuit approach , 2010, Pattern Recognit..

[49]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[51]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[52]  Gregory D. Hager,et al.  Tracking in 3D: Image Variability Decomposition for Recovering Object Pose and Illumination , 2014, Pattern Analysis & Applications.