The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series

This paper proposes the cross-quantilogram to measure the quantile dependence between two time series. We apply it to test the hypothesis that one time series has no directional predictability to another time series. We establish the asymptotic distribution of the cross-quantilogram and the corresponding test statistic. The limiting distributions depend on nuisance parameters. To construct consistent confidence intervals we employ a stationary bootstrap procedure; we establish consistency of this bootstrap. Also, we consider a self-normalized approach, which yields an asymptotically pivotal statistic under the null hypothesis of no predictability. We provide simulation studies and two empirical applications. First, we use the cross-quantilogram to detect predictability from stock variance to excess stock return. Compared to existing tools used in the literature of stock return predictability, our method provides a more complete relationship between a predictor and stock return. Second, we investigate the systemic risk of individual financial institutions, such as JP Morgan Chase, Morgan Stanley and AIG.

[1]  E. Rio About the Lindeberg method for strongly mixing sequences , 1997 .

[2]  Hani Doss,et al.  An Elementary Approach to Weak Convergence for Quantile Processes, with Applications to Censored Survival Data , 1992 .

[3]  T. Mikosch,et al.  Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process , 2000 .

[4]  L. Blume,et al.  The New Palgrave Dictionary of Economics, 2nd edition , 2008 .

[5]  Testing linearity against threshold effects: uniform inference in quantile regression , 2014 .

[6]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[7]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[8]  Tae-Hwan Kim,et al.  VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles , 2015, SSRN Electronic Journal.

[9]  Nicholas M. Kiefer,et al.  A NEW ASYMPTOTIC THEORY FOR HETEROSKEDASTICITY-AUTOCORRELATION ROBUST TESTS , 2005, Econometric Theory.

[10]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[11]  Markus K. Brunnermeier,et al.  Federal Reserve Bank of New York Staff Reports , 2013 .

[12]  R. Engle,et al.  CAViaR , 1999 .

[13]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[14]  Axel Bucher A note on weak convergence of the sequential multivariate empirical process under strong mixing , 2013, 1304.5113.

[15]  Dwight M. Jaffee,et al.  Nondiversification Traps in Catastrophe Insurance Markets , 2009 .

[16]  Oliver Linton,et al.  The quantilogram: With an application to evaluating directional predictability , 2007 .

[17]  Ta-Hsin Li,et al.  Quantile Periodograms , 2012 .

[18]  Allan Timmermann,et al.  Is the Distribution of Stock Returns Predictable? , 2008 .

[19]  Holger Dette,et al.  Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis , 2011, 1111.7205.

[20]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[21]  Simple and powerful GMM over-identification tests with accurate size , 2012 .

[22]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[23]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[24]  Winfried Stute,et al.  The Oscillation Behavior of Empirical Processes: The Multivariate Case , 1984 .

[25]  Heejoon Han Asymptotic Properties of GARCH-X Processes , 2015 .

[26]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[27]  R. Ibragimov Portfolio diversification and value at risk under thick-tailedness , 2004 .

[28]  Larry D. Haugh,et al.  Causality in temporal systems: Characterization and a survey , 1977 .

[29]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[30]  T. Mikosch,et al.  The extremogram: A correlogram for extreme , 2009 .

[31]  Sydney C. Ludvigson,et al.  Measuring and Modelling Variation in the Risk-Return Trade-Off , 2001 .

[32]  A. Gut Stopped Random Walks: Limit Theorems and Applications , 1987 .

[33]  Nicholas M. Kiefer,et al.  HETEROSKEDASTICITY-AUTOCORRELATION ROBUST STANDARD ERRORS USING THE BARTLETT KERNEL WITHOUT TRUNCATION , 2002 .

[34]  Andrew J. Patton,et al.  Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White , 2009 .

[35]  J. Rojo,et al.  Heavy‐tailed densities , 2013 .

[36]  Ignacio N. Lobato Testing That a Dependent Process Is Uncorrelated , 2001 .

[37]  Robert F. Engle,et al.  Volatility, Correlation and Tails for Systemic Risk Measurement , 2010 .

[38]  Emmanuel Rio,et al.  Inequalities and limit theorems for weakly dependent sequences , 2013 .

[39]  X. Shao,et al.  A self‐normalized approach to confidence interval construction in time series , 2010, 1005.2137.

[40]  R. Ibragimov,et al.  Emerging markets and heavy tails , 2013 .

[41]  D. Pollard,et al.  An introduction to functional central limit theorems for dependent stochastic processes , 1994 .

[42]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[43]  M. A. Arcones,et al.  Second Order Representations of the Least Absolute Deviation Regression Estimator , 1998 .

[44]  Jean-Marie Dufour,et al.  Generalized Portmanteau Statistics and Tests of Randomness , 1985 .

[45]  A. Cowles,et al.  Some A Posteriori Probabilities in Stock Market Action , 1937 .

[46]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[47]  Ludger Rüschendorf,et al.  Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .

[48]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[49]  M. Nedeljkovic,et al.  Nonparametric Test of Conditional Quantile Independence with an Application to Banks Systemic Risk , 2009 .

[50]  Norman R. Swanson,et al.  Bootstrap Conditional Distribution Tests in the Presence of Dynamic Misspecification , 2003 .

[51]  Andreas Hagemann,et al.  Robust Spectral Analysis , 2011, 1111.1965.

[52]  Yongmiao Hong,et al.  Consistent Testing for Serial Correlation of Unknown Form , 1996 .

[53]  Shouyang Wang,et al.  Granger Causality in Risk and Detection of Extreme Risk Spillover Between Financial Markets , 2009 .

[54]  M. Laurini,et al.  Empirical market microstructure: An analysis of the BRL/US$ exchange rate market , 2008 .

[55]  Holger Dette,et al.  Quantile Spectral Processes: Asymptotic Analysis and Inference , 2014, 1401.8104.

[56]  I. Mizera,et al.  Generalized run tests for heteroscedastic time series , 1998 .

[57]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[58]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[59]  P. Phillips,et al.  Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing , 2005 .

[60]  Richard A. Davis,et al.  Towards estimating extremal serial dependence via the bootstrapped extremogram , 2012 .

[61]  Axel Bücher A Note on Weak Convergence of the Sequential Multivariate Empirical Process Under Strong Mixing , 2013 .

[62]  Ta‐Hsin Li QUANTILE PERIODOGRAM AND TIME‐DEPENDENT VARIANCE , 2014 .

[63]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[64]  Ta-Hsin Li,et al.  Laplace Periodogram for Time Series Analysis , 2008 .

[65]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[66]  F. Shie,et al.  The Relation Between Relative Order Imbalance and Intraday Futures Returns: An Application of the Quantile Regression Model to Taiwan , 2011 .

[67]  T. Mikosch,et al.  Measures of serial extremal dependence and their estimation , 2013, 1303.6349.

[68]  J. Bai,et al.  Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach , 1996 .

[69]  Yixiao Sun,et al.  Spatial Heteroskedasticity and Autocorrelation Consistent Estimation of Covariance Matrix , 2010 .

[70]  Yongmiao Hong,et al.  Generalized spectral tests for serial dependence , 2000 .

[71]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[72]  Chung-Ming Kuan,et al.  Robust M Tests Without Consistent Estimation of the Asymptotic Covariance Matrix , 2006 .

[73]  Richard A. Davis,et al.  The extremogram: a correlogram for extreme events , 2009, 1001.1821.

[74]  Kengo Kato,et al.  Asymptotics for argmin processes: Convexity arguments , 2009, J. Multivar. Anal..

[75]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Hypotheses in Nonlinear Models , 2001 .

[76]  Marc L. Ross,et al.  A Survey of Systemic Risk Analytics , 2014 .

[77]  H. White,et al.  Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .

[78]  Yi-Ting Chen,et al.  M Tests with a New Normalization Matrix , 2015 .