On the role of the axial ligand in heme-based catalysis of the peroxidase and P450 type

Abstract The present commentary focusses on the role of the axial ligand in peroxidase- and P450-type catalysis. Based on molecular orbital calculations and the experimental evidence available, it is argued that the ligand of a heme-containing enzyme may be a factor in setting the relative chance, although not the intrinsic capability, of the enzyme to catalyse a specific type of heme-based reaction chemistry. The ligand can do so by influencing the electrophilicity, i.e. the redox potential of the high-valency iron-oxo complex, and also by influencing the energy barrier for a reaction pathway through delocalization of valence electrons along the axial ligands, thereby, in the case of a cysteinate but not a histidine axial ligand, stabilizing oxygen transfer pathways.