Hígado graso (parte 1): aspectos generales, epidemiología, fisiopatología e historia natural

El hígado graso no alcohólico (NAFLD) se define por la presencia de grasa o esteatosis en los hepatocitos y abarca un espectro que va desde la esteatosis simple, pasa por la esteatohepatitis no alcohólica (NASH) con inflamación y fibrosis, y finaliza en la cirrosis. Se considera una prevalencia mundial global cercana al 25% en la población general y se diagnóstica entre los 40 y 50 años, con variaciones respecto al sexo predominante y con diferencias étnicas (la población hispana es la más afectada). El hígado graso está asociado al síndrome metabólico (SM), y la obesidad se considera el principal factor de riesgo con su presencia y con su progresión. El hígado graso es un trastorno complejo y muy heterogéneo en su fisiopatología, que resulta de la interacción de múltiples elementos: factores genéticos, epigenéticos, ambientales, culturales, entre otros. Todo ello en conjunto lleva a incremento paulatino de grasa hepática, resistencia a la insulina y alteraciones hormonales y de la microbiota intestinal, lo que genera un daño hepatocelular a través de la formación de radicales libres de oxígeno y activación de la fibrogénesis hepática. La historia natural del hígado graso es dinámica: los pacientes con esteatosis simple tienen bajo riesgo de progresión a cirrosis, mientras que en los pacientes con NASH este riesgo se aumenta; sin embargo, el proceso puede ser reversible y algunas personas tendrán una mejoría espontánea. La fibrosis parece ser el determinante de la mortalidad global y de los desenlaces asociados a la enfermedad hepática; se considera que en todos los pacientes la fibrosis empeora una etapa cada 14 años y en NASH empeora en una etapa cada 7 años. Estudios previos concluyen que aproximadamente 20% de los casos de esteatosis simple progresan a NASH y que, de ellos, aproximadamente el 20% progresan a cirrosis, con presencia de hepatocarcinoma (HCC) en el 5% a 10% de ellos.

[1]  O. Ayonrinde Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD – Reconciling the present with the past , 2021, JHEP reports : innovation in hepatology.

[2]  N. Pahlavani,et al.  A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease , 2021, Nutrition & Metabolism.

[3]  A. Schürmann,et al.  Genetic and epigenetic factors determining NAFLD risk , 2020, Molecular metabolism.

[4]  D. Brenner,et al.  Molecular and cellular mechanisms of liver fibrosis and its regression , 2020, Nature Reviews Gastroenterology & Hepatology.

[5]  K. Cusi,et al.  Latin American Association for the Study of the Liver (ALEH) Practice Guidance for the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. , 2020, Annals of hepatology.

[6]  Nayla S. Al-Akl,et al.  Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers , 2020, Disease markers.

[7]  E. Tsochatzis,et al.  Changing trends of liver transplantation and mortality from non-alcoholic fatty liver disease. , 2020, Metabolism: clinical and experimental.

[8]  Mikael Bjursell,et al.  Review article: the emerging role of genetics in precision medicine for patients with non‐alcoholic steatohepatitis , 2020, Alimentary pharmacology & therapeutics.

[9]  B. Hanratty,et al.  Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies , 2020, PLoS medicine.

[10]  L. Groop,et al.  Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. , 2020, JCI insight.

[11]  K. Douka,et al.  Long non‐coding RNAs in development and disease: conservation to mechanisms , 2020, The Journal of pathology.

[12]  Y. E. Chen,et al.  TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits γ-butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. , 2020, Gastroenterology.

[13]  A. Sanyal,et al.  MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. , 2020, Gastroenterology.

[14]  H. Malhi,et al.  Pathogenesis of Nonalcoholic Steatohepatitis: An Overview , 2020, Hepatology communications.

[15]  A. Pfeiffer,et al.  Endogenously released GIP reduces and GLP-1 increases hepatic insulin extraction , 2019, Peptides.

[16]  R. Loomba,et al.  The 20% Rule of NASH Progression: The Natural History of Advanced Fibrosis and Cirrhosis Caused by NASH , 2019, Hepatology.

[17]  Z. Goodman,et al.  The Natural History of Advanced Fibrosis Due to Nonalcoholic Steatohepatitis: Data From the Simtuzumab Trials , 2019, Hepatology.

[18]  O. Cummings,et al.  Association of Histologic Disease Activity With Progression of Nonalcoholic Fatty Liver Disease , 2019, JAMA network open.

[19]  Z. Younossi,et al.  The Global Epidemiology of NAFLD and NASH in Patients with type 2 diabetes: A Systematic Review and Meta-analysis. , 2019, Journal of hepatology.

[20]  Hongliang Li,et al.  The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis , 2019, Hepatology.

[21]  M. Ziol,et al.  A 17‐Beta‐Hydroxysteroid Dehydrogenase 13 Variant Protects From Hepatocellular Carcinoma Development in Alcoholic Liver Disease , 2019, Hepatology.

[22]  A. Pujia,et al.  MBOAT7 is anchored to endomembranes by six transmembrane domains. , 2019, Journal of structural biology.

[23]  A. Wree,et al.  Novel Drivers of the Inflammatory Response in Liver Injury and Fibrosis , 2019, Seminars in Liver Disease.

[24]  Jonathan C. Cohen,et al.  PNPLA3, CGI‐58, and Inhibition of Hepatic Triglyceride Hydrolysis in Mice , 2019, Hepatology.

[25]  C. Sirlin,et al.  Prevalence of Nonalcoholic Fatty Liver Disease in Children with Obesity. , 2019, The Journal of pediatrics.

[26]  Rohit Loomba,et al.  Link between gut‐microbiome derived metabolite and shared gene‐effects with hepatic steatosis and fibrosis in NAFLD , 2018, Hepatology.

[27]  Antonio Felix Conde-Martin,et al.  Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients With Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. , 2018, Gastroenterology.

[28]  A. Feldstein,et al.  Triggering and resolution of inflammation in NASH , 2018, Nature Reviews Gastroenterology & Hepatology.

[29]  Gianluca Svegliati-Baroni,et al.  Lipotoxicity and the gut-liver axis in NASH pathogenesis. , 2018, Journal of hepatology.

[30]  Michael Charlton,et al.  The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases , 2018, Hepatology.

[31]  L. Henry,et al.  NAFLD AND NASH: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention , 2018 .

[32]  H. Mao,et al.  Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis , 2017, Human molecular genetics.

[33]  S. Friedman,et al.  Mechanisms of hepatic stellate cell activation , 2017, Nature Reviews Gastroenterology &Hepatology.

[34]  Shibu Yooseph,et al.  Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. , 2017, Cell metabolism.

[35]  D. Levy,et al.  Bi-directional analysis between fatty liver and cardiovascular disease risk factors. , 2017, Journal of hepatology.

[36]  C. Coarfa,et al.  Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. , 2016, Cancer cell.

[37]  K. Rajapakshe,et al.  Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology , 2016, Journal of biological rhythms.

[38]  F. Anania,et al.  Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. , 2016, Gastroenterology.

[39]  M. Charlton,et al.  The globalization of nonalcoholic fatty liver disease: Prevalence and impact on world health , 2016, Hepatology.

[40]  A. Sanyal,et al.  Clinical Presentation and Patient Evaluation in Nonalcoholic Fatty Liver Disease. , 2016, Clinics in liver disease.

[41]  Dermot F. Reilly,et al.  The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. , 2016, Gastroenterology.

[42]  A. Pack,et al.  The impact of obstructive sleep apnea on nonalcoholic fatty liver disease in patients with severe obesity , 2016, Obesity.

[43]  Lawrence A. David,et al.  The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota , 2016, Hepatology.

[44]  Alexis M. Kalergis,et al.  Innate Immunity and Inflammation in NAFLD/NASH , 2016, Digestive Diseases and Sciences.

[45]  N. Schork,et al.  Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study. , 2015, Gastroenterology.

[46]  D. Lawlor,et al.  The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis , 2015, PloS one.

[47]  S. Neubauer,et al.  Sex-Specific Differences in Hepatic Fat Oxidation and Synthesis May Explain the Higher Propensity for NAFLD in Men. , 2015, The Journal of clinical endocrinology and metabolism.

[48]  F. Gachon,et al.  Circadian Dysfunction and Obesity: Is Leptin the Missing Link? , 2015, Cell metabolism.

[49]  E. Bjornsson,et al.  Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. , 2015, Gastroenterology.

[50]  Mary E Rinella,et al.  Nonalcoholic fatty liver disease: a systematic review. , 2015, JAMA.

[51]  Mats Fredrikson,et al.  Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up , 2015, Hepatology.

[52]  C. Stokes,et al.  HCC and liver disease risks in homozygous PNPLA3 p.I148M carriers approach monogenic inheritance. , 2015, Journal of hepatology.

[53]  Zhen Wang,et al.  Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. , 2015, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[54]  J. Borén,et al.  Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease , 2015, Hepatology.

[55]  R. Mohamed,et al.  A common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: A meta‐analysis , 2015, Journal of gastroenterology and hepatology.

[56]  J. Dufour,et al.  Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. , 2014, Journal of hepatology.

[57]  K. Clément,et al.  TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease , 2014, Nature Communications.

[58]  Kouichi Miura,et al.  TOPIC HIGHLIGHT , 2014 .

[59]  J. Browning,et al.  Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. , 2014, Gastroenterology.

[60]  A. Wree,et al.  NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice , 2014, Hepatology.

[61]  H. Tilg,et al.  Non-alcoholic steatohepatitis: a microbiota-driven disease , 2013, Trends in Endocrinology & Metabolism.

[62]  P. Bedossa,et al.  A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. , 2013, Journal of hepatology.

[63]  V. Giorgio,et al.  Pediatric non alcoholic fatty liver disease: old and new concepts on development, progression, metabolic insight and potential treatment targets , 2013, BMC Pediatrics.

[64]  K.,et al.  Toxicant-associated Steatohepatitis , 2013, Toxicologic pathology.

[65]  M. Abraham,et al.  Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis , 2012, Hepatology.

[66]  M. Stepanova,et al.  Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. , 2012, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[67]  M. Ekstedt,et al.  Low clinical relevance of the nonalcoholic fatty liver disease activity score (NAS) in predicting fibrosis progression , 2012, Scandinavian journal of gastroenterology.

[68]  K. Clément,et al.  Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. , 2012, Journal of hepatology.

[69]  A. Baranova,et al.  Systematic review: the epidemiology and natural history of non‐alcoholic fatty liver disease and non‐alcoholic steatohepatitis in adults , 2011, Alimentary pharmacology & therapeutics.

[70]  S. Sookoian,et al.  Meta‐analysis of the influence of I148M variant of patatin‐like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease , 2011, Hepatology.

[71]  M. Stepanova,et al.  Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. , 2011, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[72]  H. Makhlouf,et al.  Pathologic criteria for nonalcoholic steatohepatitis: Interprotocol agreement and ability to predict liver‐related mortality , 2011, Hepatology.

[73]  Joel Z Stengel,et al.  Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. , 2011, Gastroenterology.

[74]  S. Sookoian,et al.  Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: Impact of liver methylation of the peroxisome proliferator–activated receptor γ coactivator 1α promoter , 2010, Hepatology.

[75]  Scott L. Friedman,et al.  Evolving challenges in hepatic fibrosis , 2010, Nature Reviews Gastroenterology &Hepatology.

[76]  Vincent Wai-Sun Wong,et al.  Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years , 2010, Gut.

[77]  G. Marchesini,et al.  HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. , 2010, Gastroenterology.

[78]  L. N. Valenti,et al.  Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease , 2010, Gut.

[79]  R. Steffensen,et al.  Activation of the complement system in human nonalcoholic fatty liver disease , 2009, Hepatology.

[80]  A. Lonardo,et al.  Genetic polymorphisms in non-alcoholic fatty liver disease: interleukin-6-174G/C polymorphism is associated with non-alcoholic steatohepatitis. , 2009, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[81]  S. Rensen,et al.  Gastrointestinal , Hepatobiliary and Pancreatic Pathology Increased Hepatic Myeloperoxidase Activity in Obese Subjects with Nonalcoholic Steatohepatitis , 2009 .

[82]  S. Caldwell,et al.  Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. , 2009, Journal of hepatology.

[83]  G. La Torre,et al.  Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease , 2009, Hepatology.

[84]  A. Rigotti,et al.  Non‐alcoholic fatty liver disease and its association with obesity, insulin resistance and increased serum levels of C‐reactive protein in Hispanics , 2009, Liver international : official journal of the International Association for the Study of the Liver.

[85]  Alexander Pertsemlidis,et al.  Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease , 2008, Nature Genetics.

[86]  J. Kench,et al.  Visceral fat: A key mediator of steatohepatitis in metabolic liver disease , 2008, Hepatology.

[87]  W. Jochum,et al.  Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. , 2007, Gastroenterology.

[88]  Amalia Gastaldelli,et al.  Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. , 2007, Gastroenterology.

[89]  M. Başkol,et al.  Oxidative stress and antioxidant defenses in serum of patients with non-alcoholic steatohepatitis. , 2007, Clinical biochemistry.

[90]  A. Lazenby,et al.  The Prevalence of Nonalcoholic Steatohepatitis is Greater in Morbidly Obese Men Compared to Women , 2006, Obesity surgery.

[91]  T. Arakawa,et al.  Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: Impact on disease progression , 2006, Hepatology.

[92]  G. Pacini,et al.  Adipokines in NASH: Postprandial lipid metabolism as a link between adiponectin and liver disease , 2005, Hepatology.

[93]  M. Manos,et al.  Racial and ethnic distribution of nonalcoholic fatty liver in persons with newly diagnosed chronic liver disease , 2005, Hepatology.

[94]  Jonathan C. Cohen,et al.  Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity , 2004, Hepatology.

[95]  P Christoffersen,et al.  Long term prognosis of fatty liver: risk of chronic liver disease and death , 2004, Gut.

[96]  S. Caldwell,et al.  The spectrum expanded: cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. , 2004, Journal of hepatology.

[97]  G. Marchesini,et al.  Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome , 2003, Hepatology.

[98]  R. Karim,et al.  NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome , 2002, Hepatology.

[99]  Rahul Krishnarao Patil,et al.  Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease , 2001, American Journal of Gastroenterology.

[100]  J. Clore,et al.  Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. , 2001, Gastroenterology.

[101]  G. Marchesini,et al.  Clinical Features and Natural History of Nonalcoholic Steatosis Syndromes , 2001, Seminars in liver disease.

[102]  T. Risby,et al.  Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. , 2000, Gastroenterology.

[103]  K. Batts,et al.  Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis , 1999, Hepatology.

[104]  B. Bacon,et al.  Hepatic iron and nonalcoholic fatty liver disease , 1999, Hepatology.

[105]  B. Cohen,et al.  Modulation of Insulin Activities by Leptin , 1996, Science.

[106]  P. Bedossa,et al.  An algorithm for the grading of activity in chronic hepatitis C , 1996, Hepatology.

[107]  R. Hanson,et al.  The natural history of nonalcoholic steatohepatitis: A follow‐up study of forty‐two patients for up to 21 years , 1990, Hepatology.

[108]  J. Sastre,et al.  Glutathione depletion by hyperphagia-induced obesity. , 1989, Life sciences.

[109]  P. Björntorp,et al.  Hepatic lipid metabolism in severe human obesity. , 1977, Metabolism: clinical and experimental.

[110]  P. Holt,et al.  Endogenous ethanol production and hepatic disease following jejunoileal bypass for morbid obesity. , 1975, The American journal of clinical nutrition.

[111]  S. Zelman The liver in obesity. , 1952, A.M.A. archives of internal medicine.