Information-Theoretic Analysis using Theorem Proving

Information theory is widely used for analyzing a wide range of scientific and engineering problems, including cryptography, neurobiology, quantum computing, plagiarism detection and other forms of data analysis. Despite the safety-critical nature of some of these applications, most of the information-theoretic analysis is done using informal techniques, mainly computer simulation and paper-and-pencil analysis, and thus cannot be completely relied upon. The unreliable nature of the produced results poses a serious problem in safety-critical applications and may result in heavy financial losses or even the loss of human life. In order to overcome the inaccuracy limitations of these techniques, this thesis proposes to conduct the analysis within the trusted kernel of a higher-order-logic (HOL) theorem prover. For this purpose, we provide HOL formalizations of the fundamental theories of measure, Lebesgue integration and probability and use them to formalize some of the most widely used information-theoretic principles. We use the Kullback-Leibler divergence as a unified measure of information which is in turn used to define the main measures of information like the Shannon entropy, mutual information and conditional mutual information. Furthermore, we introduce two new measures of information leakage, namely the information leakage degree and the conditional information leakage degree and compare them with existing measures. We illustrate the usefulness of the proposed framework by tackling various applications including the performance analysis of a communication encoder used in the proof of the Shannon source coding theorem, the quantitative analysis of privacy properties of a digital communications mixer and the one-time pad encryption system using information-theoretic measures.

[1]  Sofiène Tahar,et al.  Formal Reasoning about Expectation Properties for Continuous Random Variables , 2009, FM.

[2]  Bart Preneel,et al.  Towards Measuring Anonymity , 2002, Privacy Enhancing Technologies.

[3]  Geoffrey Smith,et al.  On the Foundations of Quantitative Information Flow , 2009, FoSSaCS.

[4]  J. K. Hunter,et al.  Measure Theory , 2007 .

[5]  Christel Baier,et al.  Principles of model checking , 2008 .

[6]  David Anthony Parker,et al.  Implementation of symbolic model checking for probabilistic systems , 2003 .

[7]  Sofiène Tahar,et al.  Quantitative Analysis of Information Flow Using Theorem Proving , 2012, ICFEM.

[8]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[9]  George Danezis,et al.  Mixminion: design of a type III anonymous remailer protocol , 2003, 2003 Symposium on Security and Privacy, 2003..

[10]  George Danezis,et al.  Towards an Information Theoretic Metric for Anonymity , 2002, Privacy Enhancing Technologies.

[11]  Naeem Ahmad Abbasi Formal Reliability Analysis using Higher-Order Logic Theorem Proving , 2012 .

[12]  Lawrence C. Paulson,et al.  ML for the working programmer , 1991 .

[13]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[14]  Radha Poovendran,et al.  A Survey on Mix Networks and Their Secure Applications , 2006, Proceedings of the IEEE.

[15]  Andrew C. Myers,et al.  Language-based information-flow security , 2003, IEEE J. Sel. Areas Commun..

[16]  Annabelle McIver,et al.  Probabilistic guarded commands mechanized in HOL , 2005, Theor. Comput. Sci..

[17]  Osman Hasan,et al.  Formal probabilistic analysis using theorem proving , 2008 .

[18]  Andrzej Ne ' dzusiak Fields and Probability , 1990 .

[19]  W. Rudin Real and complex analysis , 1968 .

[20]  Jean-Raymond Abrial,et al.  Faultless Systems: Yes We Can! , 2009, Computer.

[21]  Nick Mathewson,et al.  Tor: The Second-Generation Onion Router , 2004, USENIX Security Symposium.

[22]  Panagiotis Manolios,et al.  Computer-Aided Reasoning: An Approach , 2011 .

[23]  Jan J. M. M. Rutten,et al.  Mathematical techniques for analyzing concurrent and probabilistic systems , 2004, CRM monograph series.

[24]  Marta Z. Kwiatkowska,et al.  Quantitative Analysis With the Probabilistic Model Checker PRISM , 2006, QAPL.

[25]  Pasquale Malacaria,et al.  Assessing security threats of looping constructs , 2007, POPL '07.

[26]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[27]  Stan Wagon,et al.  The Banach-Tarski paradox , 1985 .

[28]  Sofiène Tahar,et al.  Formal verification of tail distribution bounds in the HOL theorem prover , 2009 .

[29]  Yehoshua Bar-Hillel,et al.  Foundations of Set Theory [by] Abraham A. Fraenkel, Yehoshua Bar-Hillel [and] Azriel Levy. With the Collaboration of Dirk van Dalen. -- , 1973 .

[30]  Sofiène Tahar,et al.  Providing Automated Verification in HOL Using MDGs , 2004, ATVA.

[31]  Sofiène Tahar,et al.  Performance Analysis and Functional Verification of the Stop-and-Wait Protocol in HOL , 2008, Journal of Automated Reasoning.

[32]  R. Kurshan,et al.  Formal Verification In A Commercial Setting , 1997, Proceedings of the 34th Design Automation Conference.

[33]  Sofiène Tahar,et al.  Verification of Expectation Properties for Discrete Random Variables in HOL , 2007, TPHOLs.

[34]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[35]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  R. Goldberg Methods of Real Analysis , 1964 .

[38]  Johannes Hölzl,et al.  Three Chapters of Measure Theory in Isabelle/HOL , 2011, ITP.

[39]  S. Berberian Fundamentals of real analysis , 1998 .

[40]  Sofiène Tahar,et al.  On the Formalization of the Lebesgue Integration Theory in HOL , 2010, ITP.

[41]  Yasunari Shidama,et al.  On the Formalization of Lebesgue Integrals , 2007 .

[42]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[43]  Jun Pang,et al.  Measuring Anonymity with Relative Entropy , 2006, Formal Aspects in Security and Trust.

[44]  Paul F. Syverson,et al.  Anonymous connections and onion routing , 1997, Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097).

[45]  Prakash Panangaden,et al.  Anonymity protocols as noisy channels , 2008, Inf. Comput..

[46]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[47]  Stefan Richter,et al.  Formalizing Integration Theory with an Application to Probabilistic Algorithms , 2004, TPHOLs.

[48]  Paul R. Halmos,et al.  The Foundations of Probability , 1944 .

[49]  Helly Grundbegriffe der Wahrscheinlichkeitsrechnung , 1936 .

[50]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[51]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.

[52]  Joe Hurd,et al.  Formal verification of probabilistic algorithms , 2003 .

[53]  L. D. Alfaro The Verification of Probabilistic Systems Under Memoryless Partial-Information Policies is Hard , 1999 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[56]  Michael K. Reiter,et al.  Crowds: anonymity for Web transactions , 1998, TSEC.

[57]  Manabu Hagiwara,et al.  Formalization of Shannon's Theorems in SSReflect-Coq , 2012, ITP.

[58]  John Harrison,et al.  Handbook of Practical Logic and Automated Reasoning , 2009 .

[59]  J. Harrison Formalized Mathematics , 1996 .

[60]  Yehoshua Bar-Hillel,et al.  Foundations of Set Theory , 2012 .

[61]  John Harrison,et al.  A HOL Theory of Euclidean Space , 2005, TPHOLs.

[62]  Riccardo Bettati,et al.  Information Leakage as a Model for Quality of Anonymity Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[63]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[64]  R. Gallager Information Theory and Reliable Communication , 1968 .

[65]  Sofiène Tahar,et al.  Formalization of Entropy Measures in HOL , 2011, ITP.

[66]  Mahesh Viswanathan,et al.  VESTA: A statistical model-checker and analyzer for probabilistic systems , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[67]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[68]  Józef Bia las The σ-additive Measure Theory , 1990 .

[69]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[70]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[71]  David R Lester,et al.  Topology in PVS: continuous mathematics with applications , 2007, AFM '07.

[72]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..