Equilibria und weiteres Heiteres II

We investigate several technical and conceptual questions. Our main subject is the investigation of independence as a ternary relation in the context of non-monotonic logic. In the context of probability, this investigation was started by W.Spohn et al., and then followed by J.Pearl. We look at products of function sets, and thus continue our own investigation of independence in non-monotonic logic. We show that a finite characterization of this relation in our context is impossible, and indicate how to construct all valid rules.

[1]  Karl Schlechta,et al.  A New Approach to Preferential Structures , 2000, Fundam. Informaticae.

[2]  J. Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[3]  Karl Schlechta,et al.  Some Results on Classical Preferential Models , 1992, J. Log. Comput..

[4]  Karl Schlechta,et al.  Distance semantics for belief revision , 1996, Journal of Symbolic Logic.

[5]  Gabriele Kern-Isberner Postulates for Conditional Belief Revision , 1999, IJCAI.

[6]  Dov M. Gabbay,et al.  Logical Tools for Handling Change in Agent-Based Systems , 2008, Cognitive Technologies.

[7]  Dov M. Gabbay,et al.  Conditionals and Modularity in General Logics , 2011, Cognitive Technologies.

[8]  Dov M. Gabbay,et al.  Semantic interpolation , 2009, J. Appl. Non Class. Logics.

[9]  Dov M. Gabbay,et al.  Size and Logic , 2009, Rev. Symb. Log..

[10]  Dov M. Gabbay,et al.  Analysis of the Talmudic Argumentum A Fortiori Inference Rule (Kal Vachomer) using Matrix Abduction , 2009, Stud Logica.

[11]  Wolfgang Spohn,et al.  Stochastic independence, causal independence, and shieldability , 1980, J. Philos. Log..

[12]  Karl Schlechta,et al.  Distance Based Revision of Preferential Logics , 1999, Log. J. IGPL.

[13]  Karl Schlechta,et al.  Defaults as Generalized Quantifiers , 1995, J. Log. Comput..

[14]  Craig Boutilier,et al.  Unifying Default Reasoning and Belief Revision in a Modal Framework , 1994, Artif. Intell..

[15]  Dov M. Gabbay,et al.  Reactive Preferential Structures and Nonmonotonic Consequence , 2009, Rev. Symb. Log..

[17]  C. E. Alchourrón,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985 .

[18]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[20]  Dov M. Gabbay,et al.  Independence — Revision and Defaults , 2009, Stud Logica.

[21]  R. Parikh Beliefs, belief revision, and splitting languages , 1999 .

[22]  L O ] 9 M ar 2 00 9 A semantics for obligations-Local and global properties of obligations ∗ , 2009 .