Application of phthalocyanines in flow- and sequential-injection analysis and microfluidics systems: A review

Abstract Phthalocyanines and metallophthalocyanines play a very important role in the metabolism of living organisms through biological pigments or biochromes and are therefore also employed in numerous applications in analytical chemistry. In flow-, and sequential-injection analysis and microfluidic systems the role of phthalocyanines and metallophthalocyanines is centered as either that of analyte or that of a reagent or modifier in the determination of other species. This paper covers the attributes of phthalocyanines and metallophthalocyanines complexes as enhancements in chemical analysis in flow- and sequential injection analysis and microfluidic systems and points out the advantages and disadvantages in the implementation thereof.

[1]  Z. Fang,et al.  Flow Injection Atomic Absorption Spectrometry , 1995 .

[2]  P. E. Hare,et al.  Rapid analysis of discrete samples: the use of nonsegmented, continuous flow. , 1976, Analytical biochemistry.

[3]  Graham D. Marshall,et al.  Computer-Aided Flow-Analysis for Laboratory Use and Process Analysis , 1992 .

[4]  J. Wang,et al.  Electrocatalysis and amperometric detection of organic peroxides at modified carbon-paste electrodes. , 1991, Talanta.

[5]  H. Pardue Kinetic aspects of analytical chemistry , 1989 .

[6]  R. Pandey Recent advances in photodynamic therapy , 2000 .

[7]  Hizuru Nakajima,et al.  Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA. , 2012, Talanta.

[8]  H. D. Diesbach,et al.  Quelques sels complexes des o‐dinitriles avec le cuivre et la pyridine , 1927 .

[9]  V. Linden Classification and definition of analytical methods based on flowing media (IUPAC Recommendations 1994) , 1994 .

[10]  J. K. Bradley,et al.  31P magnetic resonance spectroscopy as a predictor of efficacy in photodynamic therapy using differently charged zinc phthalocyanines , 1999, British Journal of Cancer.

[11]  Jacobus F. van Staden,et al.  Analyte enrichment using sequential-injection analysis , 1997 .

[12]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[13]  Á. Sastre‐Santos,et al.  Advances in phthalocyanine-sensitized solar cells (PcSSCs) , 2014 .

[14]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[15]  C. M. Allen,et al.  Current status of phthalocyanines in the photodynamic therapy of cancer , 2001 .

[16]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[17]  H. Budnikov,et al.  Voltammetry determination of dopamine by the electrocatalytic response of an electrode modified by a polyaniline film with an inclusion of copper(II) tetrasulfophthalocyanine , 2013, Journal of Analytical Chemistry.

[18]  T. Hasan,et al.  The potential for photodynamic therapy in the treatment of localized infections. , 2005, Photodiagnosis and photodynamic therapy.

[19]  J. Hart,et al.  Flow-injection detector incorporating a screen-printed disposable amperometric biosensor for monitoring organophosphate pesticides. , 1997, The Analyst.

[20]  T. Nyokong Desired properties of new phthalocyanines for photodynamic therapy , 2011 .

[21]  A. Lowe,et al.  213. Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide , 1934 .

[22]  C. E. Efstathiou,et al.  Flow injection amperometric determination of thiocyanate and selenocyanate at a cobalt phthalocyanine modified carbon paste electrode , 1994 .

[23]  A. Gonsalves,et al.  Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli , 2013, Molecules.

[24]  A. Lowe,et al.  214. Phthalocyanines. Part III. Preliminary experiments on the preparation of phthalocyanines from phthalonitrile , 1934 .

[25]  Raluca-Ioana Stefan-van Staden,et al.  Evaluation of Amperometric Dot Microsensors for the Analysis of Serotonin in Urine Samples , 2014 .

[26]  M. Chicharro,et al.  Electrocatalytic amperometric determination of amitrole using a cobalt-phthalocyanine-modified carbon paste electrode , 2002, Analytical and Bioanalytical Chemistry.

[27]  T. Nyokong,et al.  The renaissance in optical spectroscopy of phthalocyanines and other tetraazaporphyrins , 2004 .

[28]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[29]  Lúcio Angnes,et al.  Miniaturized reference electrodes with microporous polymer junctions , 1996 .

[30]  Marek Trojanowicz,et al.  Flow Injection Analysis: Instrumentation and Applications , 2000 .

[31]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[32]  Yongxin Li,et al.  A flow-injection chemiluminescence method for the determination of some estrogens by enhancement of luminol-hydrogen peroxide-tetrasulfonated manganese phthalocyanine reaction. , 2006, Talanta.

[33]  I. Okura Photosensitization of Porphyrins and Phthalocyanines , 2001 .

[34]  李幼升,et al.  Ph , 1989 .

[35]  Miguel Valcárcel Cases,et al.  Automatic methods of analysis , 1988 .

[36]  Jaromir Růžička,et al.  Flow injection analysis , 1981 .

[37]  Bai-Sheng Zhu,et al.  Novel planar binuclear zinc phthalocyanine sensitizer for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties , 2015 .

[38]  Raluca-Ioana Stefan-van Staden,et al.  Application of porphyrins in flow-injection analysis: a review. , 2010, Talanta.

[39]  Qiyong Zhu A novel chemiluminescent flow injection analysis of trace amounts of rutin by its inhibition of the luminol-hydrogen peroxide reaction catalyzed by tetrasulfonated colbalt phthalocyanine. , 2009, Luminescence : the journal of biological and chemical luminescence.

[40]  D. Ivanov,et al.  Microfluidics in biotechnology , 2004, Journal of nanobiotechnology.

[41]  T. Kawai,et al.  Cobalt Phthalocyanine-Modified Boron-Doped Diamond Electrode for Highly Sensitive Detection of Hydrogen Peroxide , 2009 .

[42]  T. Imato,et al.  Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode. , 2015, Talanta.

[43]  P. Gregory Industrial applications of phthalocyanines , 2000 .

[44]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[45]  Miguel Valcárcel Cases,et al.  Flow-injection analysis : principles and applications , 1987 .

[46]  Peter Ertl,et al.  Microfluidic Systems for Pathogen Sensing: A Review , 2009, Sensors.

[47]  M. P. Sotomayor,et al.  Cobalt phthalocyanine as a biomimetic catalyst in the amperometric quantification of dipyrone using FIA. , 2011, Talanta.

[48]  Giulio Jori and Olimpia Coppellotti Inactivation of Pathogenic Microorganisms by Photodynamic Techniques:Mechanistic Aspects and Perspective Applications. , 2007 .

[49]  Raymond Bonnett,et al.  Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy , 1995 .

[50]  P. McCarron,et al.  Antifungal photodynamic therapy. , 2008, Microbiological research.

[51]  Analytical Aspects of Chemical Process Control Part 1. Fundamentals , 1999 .

[52]  Meihui Chen,et al.  Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products , 2011, International journal of molecular sciences.

[53]  J. Ruzicka,et al.  Principles of stopped-flow sequential injection analysis and its application to the kinetic determination of traces of a proteolytic enzyme. , 1991, Analytical chemistry.

[54]  A. Kamel,et al.  Development of a Novel Automatic Potentiometric System for Determination of Selenium and Its Application in Pharmaceutical Formulations and Anodic Slime , 2008 .

[55]  J. Ruzicka,et al.  Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays , 1990 .

[56]  T. M. Gulik,et al.  Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. , 2013, Current medicinal chemistry.

[57]  L. Skeggs An automatic method for colorimetric analysis. , 1957, American journal of clinical pathology.

[58]  J. Pingarrón,et al.  Electrocatalytic and flow-injection determination of the antioxidant tert.-butylhydroxyanisole at a nickel phthalocyanine polymer modified electrode , 1995 .

[59]  J. Zen,et al.  Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode. , 2004, Talanta.

[60]  A. Braun,et al.  Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid , 1907 .

[61]  Tebello Nyokong,et al.  Synthetic pathways to water-soluble phthalocyanines and close analogs , 2010 .

[62]  Jin-ling Huang,et al.  Determination of diethylstilbestrol by enhancement of luminol–hydrogen peroxide–tetrasulfonated cobalt phthalocyanine chemiluminescence , 2004 .

[63]  G. D. Marshall,et al.  Zone fluidics in flow analysis: potentialities and applications , 2003 .

[64]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .

[65]  C. E. Efstathiou,et al.  Flow injection-pulse amperometric detection of ephedrine at a cobalt phthalocyanine modified carbon paste electrode. , 2000, The Analyst.

[66]  A. Lowe,et al.  217. Phthalocyanines. Part VI. The structure of the phthalocyanines , 1934 .

[67]  H. van den Bergh,et al.  Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics , 2011, Molecules.

[68]  M. Chicharro,et al.  Flow Injection Analysis of Aziprotryne Using an Electrochemical Sensor Based on Cobalt Phthalocyanine Modified Carbon Paste Electrode , 2002 .

[69]  M. Vicente,et al.  Recent progress in the syntheses and biological evaluation of boronated porphyrins for boron neutron-capture therapy. , 2006, Anti-cancer agents in medicinal chemistry.

[70]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[71]  G. Christian,et al.  Sequential injection technique for automation of complex analytical procedures: fluorometric assay of factor thirteen. , 1993, Talanta.

[72]  M. Fiorani,et al.  Determination of pharmaceutical thiols by liquid chromatography with electrochemical detection: Use of an electrode with a conductive carbon cement matrix, chemically modified with cobalt phthalocyanine , 1996 .

[73]  M. Wainwright,et al.  Photodynamic antimicrobial chemotherapy (PACT). , 1998, Journal of Antimicrobial Chemotherapy.

[74]  R. E. Taljaard,et al.  Application of sequential-injection analysis as process analyzers , 1998 .

[75]  G. P. Moss Nomenclature of tetrapyrroles (Recommendations 1986) , 1987 .

[76]  Yongxin Li,et al.  A sensitive inhibition chemiluminescence method for the determination of trace tannic acid using the reaction of luminol-hydrogen peroxide catalysed by tetrasulphonated manganese phthalocyanine. , 2007, Luminescence : the journal of biological and chemical luminescence.

[77]  P. Gregory Steamrollers, sports cars and security: phthalocyanine progress through the ages , 1999 .

[78]  R. P. Linstead,et al.  212. Phthalocyanines. Part I. A new type of synthetic colouring matters , 1934 .

[79]  Jean-Louis Marty,et al.  A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. , 2012, Biosensors & bioelectronics.

[80]  L. Angnes,et al.  Quantification of N-acetylcysteine in pharmaceuticals using cobalt phthalocyanine modified graphite electrodes. , 2011, Talanta.

[81]  J. Ruzicka,et al.  Flow injection analyses , 1975 .

[82]  R. Baldwin,et al.  Phthalocyanine-containing chemically modified electrodes for electrochemical detection in liquid chromatography/flow injection systems , 1984 .

[83]  Andrew J. deMello,et al.  Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays , 2005 .

[84]  Javier Saurina,et al.  Quantitative determinations in conventional flow injection analysis based on different chemometric calibration statregies: a review , 2001 .

[85]  T. Nyokong,et al.  Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[86]  G. Christian,et al.  Fundamentals of sinusoidal flow sequential injection spectrophotometry. , 1991, Analytical chemistry.

[87]  J. V. van Lier,et al.  Metal complexes as photo- and radiosensitizers. , 1999, Chemical reviews.

[88]  Gary D. Christian,et al.  Variable flow rates and a sinusoidal flow pump for flow injection analysis , 1990 .

[89]  P. Stockwell Automatic Chemical Analysis , 1996 .

[90]  T. Maisch Revitalized Strategies Against Multi-Resistant Bacteria: Antimicrobial Photodynamic Therapy and Bacteriophage Therapy , 2007 .

[91]  Elo Harald Hansen,et al.  Exploiting kinetic-based flow-injection methods for qunatitative chemical assays , 1992 .

[92]  Tebello Nyokong,et al.  Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: Synthesis, photophysical, photochemical and bovine serum albumin binding properties , 2011 .

[93]  D. Phillips,et al.  The photochemistry of sensitisers for photodynamic therapy , 1995 .

[94]  H. Budnikov,et al.  Electrocatalytic oxidation and flow-injection determination of sulfur amino acids on a glassy carbon electrode modified by a nickel(II) polytetrasulfophthalocyanine film , 2013, Journal of Analytical Chemistry.

[95]  A. Woolley,et al.  Ultra-high-speed DNA sequencing using capillary electrophoresis chips. , 1995, Analytical chemistry.

[96]  J. F. Staden Solving the problems of sequential injection systems as process analyzers , 2002 .

[97]  R. Torgrip,et al.  Increasing the scope and power of flow-injection analysis through chemometric approaches , 2003 .

[98]  G. Christian,et al.  Novel single standard calibration and dilution method performed by the sequential injection technique , 1992 .

[99]  Ademar Wong,et al.  Monitoring of diclofenac with biomimetic sensor in batch and FIA systems , 2014 .

[100]  J. Masini,et al.  Sequential injection analysis (SIA) and response surface methodology: A versatile small volume approach for optimization of photo-Fenton processes , 2009 .

[101]  L. Angnes,et al.  Flow-injection electrochemical determination of citric acid using a cobalt(II)-phthalocyanine modified carbon paste electrode. , 2013, Talanta.

[102]  Graphene Based Dot Microsensors Used for the Screening of Urine for Adenine, Guanine and Epinephrine , 2014 .

[103]  Jaromir Ruzicka,et al.  Retro-review of flow-injection analysis , 2008 .

[104]  Saad S. M. Hassan,et al.  Novel Polymeric Membrane Sensors Based on Mn(III) Porphyrin and Co(II) Phthalocyanine Ionophores for Batch and Flow Injection Determination of Azide , 2008 .

[105]  H. M. Widmer,et al.  The use of chemical sensors in industry , 1990 .