L-Functions and Tamagawa Numbers of Motives

The notion of a motif was first defined and studied by A. Grothendieck, and this paper is an attempt to understand some of the implications of his ideas for arithmetic. We will formulate a conjecture on the values at integer points of L-functions associated to motives. Conjectures due to Deligne and Beilinson express these values “modulo Q* multiples” in terms of archimedean period or regulator integrals. Our aim is to remove the Q* ambiguity by defining what are in fact Tamagawa numbers for motives. The essential technical tool for this is the Fontaine-Messing theory of p-adic cohomology. As evidence for our Tamagawa number conjecture, we show that it is compatible with isogeny, and we include strong results due to one of us (Kato) for the Riemann zeta function and for elliptic curves with complex multiplication.

[1]  E. D. Shalit Iwasawa theory of elliptic curves with complex multiplication : p-adic L functions , 1987 .

[2]  J. Fontaine,et al.  Construction de représentations $p$-adiques , 1982 .

[3]  Kazuya Kato The explicit reciprocity law and the cohomology of Fontaine-Messing , 1991 .

[4]  André Weil,et al.  Adeles and algebraic groups , 1982 .

[5]  S. Bloch A note on height pairings, Tamagawa numbers, and the birch and swinnerton-dyer conjecture , 1980 .

[6]  P. Fontaine Sur certains types de representations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate , 1982 .

[7]  T. Ono ON THE TAMAGAWA NUMBER OF ALGEBRAIC TORI , 1963 .

[8]  A. A. Beilinson,et al.  Higher regulators and values of L-functions , 1985 .

[9]  C. Soulé $p$-adic $K$-theory of elliptic curves , 1987 .

[10]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[11]  C. Soulé Opérations En K-Théorie Algébrique , 1985, Canadian Journal of Mathematics.

[12]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[13]  M. Taylor INTRODUCTION TO CYCLOTOMIC FIELDS(Graduate Texts in Mathematics, 83) , 1983 .

[14]  C. Soulé On higher p-adic regulators , 1981 .

[15]  Takashi Ono,et al.  Arithmetic of Algebraic Tori , 1961 .

[16]  J. Tate p -Divisible Groups , 1967 .

[17]  S. Bloch Height pairings for algebraic cycles , 1984 .

[18]  Hyman Bass,et al.  Algebraic K-theory , 1968 .

[19]  P. Deligne La conjecture de Weil. I , 1974 .

[20]  R. Coleman Local units modulo circular units , 1983 .

[21]  U. Jannsen On the ℓ-adic cohomology of varieties over number fields and its Galois cohomology , 1989 .

[22]  Y. Ihara Profinite braid groups, Galois representations and complex multiplications , 1986 .

[23]  R. Coleman Division values in local fields , 1979 .

[24]  C. Soulé The rank of étale cohomology of varieties over $p$-adic or number fields , 1984 .

[25]  A. Wiles,et al.  Class fields of abelian extensions of Q , 1984 .

[26]  J. Tate,et al.  On the conjectures of Birch and Swinnerton-Dyer and a geometric analog , 1966 .

[27]  C. Soulé K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale , 1979 .