Polyglutamine spinocerebellar ataxias — from genes to potential treatments

The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.

[1]  S. Tezenas du Montcel,et al.  Survival and severity in dominant cerebellar ataxias , 2015, Annals of clinical and translational neurology.

[2]  H. Zoghbi,et al.  Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways , 2016, Neuron.

[3]  H. Zoghbi,et al.  RORα-Mediated Purkinje Cell Development Determines Disease Severity in Adult SCA1 Mice , 2006, Cell.

[4]  Mani Ramaswami,et al.  The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation , 2011, Proceedings of the National Academy of Sciences.

[5]  D. Timmann,et al.  The natural history of spinocerebellar ataxia type 1, 2, 3, and 6 , 2011, Neurology.

[6]  S. Pulst,et al.  The Initial Symptom and Motor Progression in Spinocerebellar Ataxias , 2017, The Cerebellum.

[7]  Paola Giunti,et al.  Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study , 2015, The Lancet Neurology.

[8]  M. Diamond,et al.  Polyglutamine diseases: emerging concepts in pathogenesis and therapy. , 2007, Human molecular genetics.

[9]  A. Matilla-Dueñas,et al.  Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). , 2016, Human molecular genetics.

[10]  C. Duyckaerts,et al.  A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. , 2015, American journal of human genetics.

[11]  J. Rothstein,et al.  Spectrin mutations cause spinocerebellar ataxia type 5 , 2006, Nature Genetics.

[12]  David A. Knowles,et al.  Therapeutic reduction of ataxin 2 extends lifespan and reduces pathology in TDP-43 mice , 2017, Nature.

[13]  S. Pulst,et al.  SCA13 , 2008, The Cerebellum.

[14]  Qiuyan Wang,et al.  Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3 , 2006, The Journal of cell biology.

[15]  H. Paulson,et al.  Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. , 2011, Molecular cell.

[16]  Lance T. Pflieger,et al.  Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2 , 2017, Human molecular genetics.

[17]  J. Stockman Exercise and Genetic Rescue of SCA1 via the Transcriptional Repressor Capicua , 2013 .

[18]  U. Rüb,et al.  Brain pathology of spinocerebellar ataxias , 2012, Acta Neuropathologica.

[19]  Elsdon Storey,et al.  Spinocerebellar ataxia type 15 , 2008, The Cerebellum.

[20]  N. Simonis,et al.  MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43) , 2016, Neurology: Genetics.

[21]  V. Shakkottai,et al.  Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. , 2014, Future neurology.

[22]  H. Paulson,et al.  Early Changes in Cerebellar Physiology Accompany Motor Dysfunction in the Polyglutamine Disease Spinocerebellar Ataxia Type 3 , 2011, The Journal of Neuroscience.

[23]  J. Cleary,et al.  Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. , 2014, Current opinion in genetics & development.

[24]  Shihua Li,et al.  Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis , 2016, Rare diseases.

[25]  A. Chakraborty,et al.  The Role of the Mammalian DNA End-processing Enzyme Polynucleotide Kinase 3’-Phosphatase in Spinocerebellar Ataxia Type 3 Pathogenesis , 2015, PLoS genetics.

[26]  N. Bonini,et al.  Hsp104 Suppresses Polyglutamine-Induced Degeneration Post Onset in a Drosophila MJD/SCA3 Model , 2013, PLoS genetics.

[27]  K. Scaglione,et al.  Ubiquitin-Binding Site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23 , 2014, Nature Communications.

[28]  P. Mazzoni,et al.  Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study , 2013, Orphanet Journal of Rare Diseases.

[29]  K. Scaglione,et al.  Ubiquitination Regulates the Neuroprotective Function of the Deubiquitinase Ataxin-3 in Vivo* , 2013, The Journal of Biological Chemistry.

[30]  S. Tsuji Dentatorubral-pallidoluysian atrophy. , 2012, Handbook of clinical neurology.

[31]  R. Albin,et al.  The de-ubiquitinating enzyme ataxin-3 does not modulate disease progression in a knock-in mouse model of Huntington disease. , 2013, Journal of Huntington's disease.

[32]  H. Paulson,et al.  Toward understanding Machado–Joseph disease , 2012, Progress in Neurobiology.

[33]  P L Pearson,et al.  Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. , 2004, Brain : a journal of neurology.

[34]  S. Kish,et al.  Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype , 2004, Acta Neuropathologica.

[35]  Daniel R. Scoles,et al.  Antisense oligonucleotide therapy for spinocerebellar ataxia type 2 , 2017, Nature.

[36]  H. Zoghbi,et al.  The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. , 2001, Human molecular genetics.

[37]  R. P. Menon,et al.  Allosteric regulation of deubiquitylase activity through ubiquitination , 2015, Front. Mol. Biosci..

[38]  P. Coutinho,et al.  Epidemiology and clinical aspects of Machado-Joseph disease. , 1993, Advances in neurology.

[39]  T. Klockgether,et al.  SCA6 is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. , 1997, Human molecular genetics.

[40]  S. Pulst,et al.  The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression. , 1998, Human molecular genetics.

[41]  L. Pereira de Almeida,et al.  Calpain inhibition reduces ataxin-3 cleavage alleviating neuropathology and motor impairments in mouse models of Machado-Joseph disease. , 2014, Human molecular genetics.

[42]  Y. Agid,et al.  Clinical and molecular features of spinocerebellar ataxia type 6 , 1997, Neurology.

[43]  D. Rubinsztein,et al.  Polyglutamine tracts regulate beclin 1-dependent autophagy , 2017, Nature.

[44]  D. Bentley Coupling mRNA processing with transcription in time and space , 2014, Nature Reviews Genetics.

[45]  S. Pulst,et al.  A novel protein with RNA-binding motifs interacts with ataxin-2. , 2000, Human molecular genetics.

[46]  Georg Auburger,et al.  Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7 , 2013, Progress in Neurobiology.

[47]  Jun Wang,et al.  Second Cistron in CACNA1A Gene Encodes a Transcription Factor Mediating Cerebellar Development and SCA6 , 2013, Cell.

[48]  S. di Donato,et al.  Spinocerebellar ataxia type 28. , 2012, Handbook of clinical neurology.

[49]  Jan Löwe,et al.  The Structure of the AXH Domain of Spinocerebellar Ataxin-1* , 2004, Journal of Biological Chemistry.

[50]  C. Ross,et al.  DNA repair: A unifying mechanism in neurodegeneration , 2016, Nature.

[51]  A. Koeppen,et al.  Inactivation of PNKP by Mutant ATXN3 Triggers Apoptosis by Activating the DNA Damage-Response Pathway in SCA3 , 2015, PLoS genetics.

[52]  J. Kril,et al.  Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions , 2015, Annals of neurology.

[53]  P. Grant,et al.  Histone acetylation, acetyltransferases, and ataxia--alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. , 2010, Advances in protein chemistry and structural biology.

[54]  U. Rüb,et al.  ATXN2-CAG42 Sequesters PABPC1 into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice , 2012, PLoS genetics.

[55]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[56]  Carlos A. Matos,et al.  Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models , 2016, The Journal of cell biology.

[57]  J. McBride,et al.  Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. , 2016, Human molecular genetics.

[58]  海野 敏紀 Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6 , 2012 .

[59]  P. Heutink,et al.  Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype , 2006, Movement disorders : official journal of the Movement Disorder Society.

[60]  Janghoo Lim,et al.  Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1 , 2008, Nature.

[61]  Peter Bauer,et al.  Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6 , 2010, NeuroImage.

[62]  C. Gomez,et al.  C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. , 2006, Human molecular genetics.

[63]  Guanghui Wang,et al.  Ataxin-3 Regulates Aggresome Formation of Copper-Zinc Superoxide Dismutase (SOD1) by Editing K63-linked Polyubiquitin Chains* , 2012, The Journal of Biological Chemistry.

[64]  H. Lehrach,et al.  Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. , 2007, Molecular biology of the cell.

[65]  Janel O. Johnson,et al.  Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11 , 2007, Nature Genetics.

[66]  Annalisa Pastore,et al.  SCA3: Neurological features, pathogenesis and animal models , 2008, The Cerebellum.

[67]  Ludger Schöls,et al.  Electrophysiology in spinocerebellar ataxias: Spread of disease and characteristic findings , 2008, The Cerebellum.

[68]  T. Maeda,et al.  Transient sequestration of TORC1 into stress granules during heat stress. , 2012, Molecular cell.

[69]  Christopher D. Brown,et al.  A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. , 2012, Human molecular genetics.

[70]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[71]  J. Schulz,et al.  CDK5 protects from caspase‐induced Ataxin‐3 cleavage and neurodegeneration , 2014, Journal of neurochemistry.

[72]  S. Saxena,et al.  Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology , 2016, Neuron.

[73]  M. Hayden,et al.  Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression , 2015, Scientific Reports.

[74]  T. Tang,et al.  Toward therapeutic targets for SCA3: Insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance , 2015, Progress in Neurobiology.

[75]  G. Rouleau,et al.  Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. , 2014, JAMA neurology.

[76]  A. Jacobson,et al.  Pbp1p, a Factor Interacting withSaccharomyces cerevisiae Poly(A)-Binding Protein, Regulates Polyadenylation , 1998, Molecular and Cellular Biology.

[77]  H. Zoghbi,et al.  Phosphorylation of ATXN1 at Ser776 in the cerebellum , 2009, Journal of neurochemistry.

[78]  H Furuya,et al.  Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16 , 2007, Journal of Medical Genetics.

[79]  Harry T Orr,et al.  Recovery from Polyglutamine-Induced Neurodegeneration in Conditional SCA1 Transgenic Mice , 2004, The Journal of Neuroscience.

[80]  A. Durr,et al.  Spinocerebellar ataxia type 28 , 2020, Definitions.

[81]  K. Tagawa,et al.  RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhance DNA damage repair , 2016, Journal of the Neurological Sciences.

[82]  Hartwig Wolburg,et al.  Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. , 2009, Human molecular genetics.

[83]  Toby J. Gibson,et al.  Phosphorylation of S776 and 14-3-3 Binding Modulate Ataxin-1 Interaction with Splicing Factors , 2009, PloS one.

[84]  Sonya M. Hanson,et al.  Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? , 2015, Movement disorders : official journal of the Movement Disorder Society.

[85]  P. Grant,et al.  Poly(Q) Expansions in ATXN7 Affect Solubility but Not Activity of the SAGA Deubiquitinating Module , 2015, Molecular and Cellular Biology.

[86]  G. Kozlov,et al.  Structure and function of the C-terminal PABC domain of human poly(A)-binding protein , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Renee M. Brielmann,et al.  Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. , 2015, Brain : a journal of neurology.

[88]  D. Borchelt,et al.  RAN Translation in Huntington Disease , 2015, Neuron.

[89]  B. Dubois,et al.  Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 , 2011, Neurology.

[90]  L. Tora,et al.  Both normal and polyglutamine- expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase- containing complexes. , 2006, Biochemical Society symposium.

[91]  Alexandra Durr,et al.  Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond , 2010, The Lancet Neurology.

[92]  Huda Y. Zoghbi,et al.  SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776 , 2010, Neuron.

[93]  Zoran Brkanac,et al.  Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. , 2003, American journal of human genetics.

[94]  B. Chait,et al.  Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  B. Davidson,et al.  Reinstating Aberrant mTORC1 Activity in Huntington’s Disease Mice Improves Disease Phenotypes , 2015, Neuron.

[96]  M. Gorospe,et al.  Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. , 2016, Biochimica et biophysica acta.

[97]  Paola Giunti,et al.  Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans , 2007, PLoS genetics.

[98]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[99]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[100]  A. Singleton,et al.  Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling , 2010, Trends in Neurosciences.

[101]  Till-Karsten Hauser,et al.  Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. , 2013, Brain : a journal of neurology.

[102]  G. Garden,et al.  Spinocerebellar Ataxia Type 7 Cerebellar Disease Requires the Coordinated Action of Mutant Ataxin-7 in Neurons and Glia, and Displays Non-Cell-Autonomous Bergmann Glia Degeneration , 2011, The Journal of Neuroscience.

[103]  D. Cleveland,et al.  Rethinking ALS: The FUS about TDP-43 , 2009, Cell.

[104]  P. Tsai,et al.  Spinocerebellar ataxia 35 , 2014, Neurology.

[105]  H. Zoghbi,et al.  Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1 , 2003, Cell.

[106]  L. Schöls,et al.  Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites , 2009, Neuropathology and applied neurobiology.

[107]  Lance T. Pflieger,et al.  Ataxin-2 Regulates RGS8 Translation in a New BAC-SCA2 Transgenic Mouse Model , 2015, PLoS genetics.

[108]  C Jodice,et al.  The AXH module: an independently folded domain common to ataxin‐1 and HBP1 , 2003, FEBS letters.

[109]  A. F. Neuwald,et al.  Ataxin-2, global regulators and bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain , 1997, Journal of Molecular Medicine.

[110]  R. Valabrègue,et al.  In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7 , 2015, Movement disorders : official journal of the Movement Disorder Society.

[111]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[112]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[113]  M. Ivanova,et al.  Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. , 2016, Brain : a journal of neurology.

[114]  Timothy J. Ebner,et al.  Abnormalities in the Climbing Fiber-Purkinje Cell Circuitry Contribute to Neuronal Dysfunction in ATXN1[82Q] Mice , 2011, The Journal of Neuroscience.

[115]  Hui Ho Vanessa Chang,et al.  4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6 , 2016, Scientific Reports.

[116]  Harry T Orr,et al.  RNA association and nucleocytoplasmic shuttling by ataxin-1 , 2005, Journal of Cell Science.

[117]  Shirley Hansen,et al.  Dominantly inherited olivopontocerebellar atrophy from eastern Cuba Clinical, neuropathological, and biochemical findings , 1989, Journal of the Neurological Sciences.

[118]  N. Déglon,et al.  RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease , 2014, PloS one.

[119]  Tao Chen,et al.  The electrophysiology of spinocerebellar ataxias , 2016, Neurophysiologie Clinique/Clinical Neurophysiology.

[120]  H. Paulson Machado-Joseph disease/spinocerebellar ataxia type 3. , 2012, Handbook of clinical neurology.

[121]  T Klockgether,et al.  The natural history of degenerative ataxia: a retrospective study in 466 patients. , 1998, Brain : a journal of neurology.

[122]  H. Zoghbi,et al.  Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model , 2011, Human molecular genetics.

[123]  Juan Botas,et al.  The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins , 2005, Cell.

[124]  I. Bezprozvanny,et al.  In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. , 2016, Journal of neurophysiology.

[125]  Effat S. Emamian,et al.  Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 2003, Neuron.

[126]  D. Pietrobon,et al.  Calcium channels and channelopathies of the central nervous system , 2002, Molecular Neurobiology.

[127]  D. Rubinsztein,et al.  CCT complex restricts neuropathogenic protein aggregation via autophagy , 2016, Nature Communications.

[128]  Janghoo Lim,et al.  ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology , 2006, Cell.

[129]  U. Rüb,et al.  New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado–Joseph disease) , 2008, Current opinion in neurology.

[130]  S. Shimizu,et al.  HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice , 2014, EMBO molecular medicine.

[131]  P. Holmans,et al.  DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases , 2016, Annals of neurology.

[132]  R. Empson,et al.  Prolonged Type 1 Metabotropic Glutamate Receptor Dependent Synaptic Signaling Contributes to Spino-Cerebellar Ataxia Type 1 , 2016, The Journal of Neuroscience.

[133]  U. Ziemann,et al.  Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: A TMS study , 2016, Clinical Neurophysiology.

[134]  L. Pallanck,et al.  Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. , 2006, Human molecular genetics.

[135]  H. Zoghbi,et al.  Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. , 2000, Human molecular genetics.

[136]  S. Tsui,et al.  A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia , 2014, Journal of Medical Genetics.

[137]  H. Zoghbi,et al.  Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. , 2004, Human molecular genetics.

[138]  H. Paulson,et al.  Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. , 2005, Molecular cell.

[139]  Georg Auburger,et al.  Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies , 1999, Acta Neuropathologica.

[140]  H. Zoghbi,et al.  A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration , 2002, Neuron.

[141]  L. Rüttiger,et al.  Nuclear Localization of Ataxin-3 Is Required for the Manifestation of Symptoms in SCA3: In Vivo Evidence , 2007, The Journal of Neuroscience.

[142]  F. Tempia,et al.  ELOVL5 mutations cause spinocerebellar ataxia 38. , 2014, American journal of human genetics.

[143]  S. Pulst,et al.  Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2 , 2017, Human molecular genetics.

[144]  Harry T Orr,et al.  Ataxin-1 Nuclear Localization and Aggregation Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 1998, Cell.

[145]  H. Orr,et al.  Emerging pathogenic pathways in the spinocerebellar ataxias. , 2009, Current opinion in genetics & development.

[146]  Yosef Gruenbaum,et al.  Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor , 2016, Proceedings of the National Academy of Sciences.

[147]  S. Pulst,et al.  Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2 , 2012, Human molecular genetics.

[148]  R. Finkel,et al.  Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study , 2016, The Lancet.

[149]  S. Pulst,et al.  Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human , 2000, Nature Genetics.

[150]  D. Corey,et al.  Allele-selective inhibition of expression of huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. , 2013, Biochemistry.

[151]  Thomas M. Durcan,et al.  Ataxin-3 and Its E3 Partners: Implications for Machado–Joseph Disease , 2013, Front. Neurol..

[152]  C. Gomez,et al.  An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron , 2016, Science Translational Medicine.

[153]  U. Ziemann,et al.  Corticomuscular Coherence: a Novel Tool to Assess the Pyramidal Tract Dysfunction in Spinocerebellar Ataxia Type 2 , 2016, The Cerebellum.

[154]  Harry T Orr,et al.  Aminopyridines Correct Early Dysfunction and Delay Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1 , 2011, The Journal of Neuroscience.

[155]  S. Pulst,et al.  Clinical and molecular analysis of a pedigree of southern Italian ancestry with spinocerebellar ataxia type 2 , 1997, Neurology.

[156]  D. Strøbæk,et al.  Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. , 2012, Chemistry & biology.

[157]  R. Finkel,et al.  Results of a Phase 2 Open-Label Study of ISIS-SMNRx in Patients with Infantile (Type 1) Spinal Muscular Atrophy (S6.003) , 2014 .

[158]  H. Orr,et al.  Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability , 2015, The Journal of Neuroscience.

[159]  Hung-Ying Kao,et al.  Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[160]  T. Ashizawa,et al.  Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: A toxic RNA gain‐of‐function model , 2012, Journal of neuroscience research.

[161]  H. van Attikum,et al.  Ataxin‐3 consolidates the MDC1‐dependent DNA double‐strand break response by counteracting the SUMO‐targeted ubiquitin ligase RNF4 , 2017, The EMBO journal.

[162]  Harry T Orr,et al.  SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat , 1995, Cell.

[163]  H. Paulson,et al.  Evaluation of Antisense Oligonucleotides Targeting ATXN3 in SCA3 Mouse Models , 2017, Molecular therapy. Nucleic acids.