Gaussian sum filter of Markov jump non-linear systems

This paper proposes a Gaussian sum filtering (GSF) framework for the state estimation of Markov jump non-linear systems. Through presenting the Gaussian sum approximations about the model-conditioned state posterior probability density functions, a general GSF framework in the minimum mean square error sense is derived. The minor Gaussian-set design is utilised to merge the Gaussian components at the beginning, which can effectively limit the computational requirements. Simulation result shows that the proposed algorithm demonstrates comparable performance to the interacting multiple model particle filter with significantly reduced computational cost.

[1]  Thushara D. Abhayapala,et al.  Gaussian-Sum Cubature Kalman Filter with Improved Robustness for Bearings-only Tracking , 2014, IEEE Signal Processing Letters.

[2]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[3]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[4]  Vikram Krishnamurthy,et al.  Expectation maximization algorithms for MAP estimation of jump Markov linear systems , 1999, IEEE Trans. Signal Process..

[5]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[6]  H.A.P. Blom,et al.  Exact Bayesian and particle filtering of stochastic hybrid systems , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[7]  X. Rong Li,et al.  General model-set design methods for multiple-model approach , 2005, IEEE Transactions on Automatic Control.

[8]  Thushara D. Abhayapala,et al.  A Gaussian-Sum Based Cubature Kalman Filter for Bearings-Only Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Y. Bar-Shalom,et al.  IMM estimator versus optimal estimator for hybrid systems , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Xuehong Sun,et al.  Hybrid System State Tracking and Fault Detection Using Particle Filters , 2006, IEEE Transactions on Control Systems Technology.

[11]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[12]  Y. Boers,et al.  Efficient particle filter for jump Markov nonlinear systems , 2005 .

[13]  Aubrey B. Poore,et al.  Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.

[14]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[15]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .