Object tracking using SIFT features and mean shift

A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation-maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.

[1]  David J. Fleet,et al.  People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[2]  B. G. Schunck The image flow constraint equation , 1986 .

[3]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[6]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[7]  Greg Welch,et al.  SCAAT: incremental tracking with incomplete information , 1997, SIGGRAPH.

[8]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Larry S. Davis,et al.  Probabilistic tracking in joint feature-spatial spaces , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Larry S. Davis,et al.  3-D model-based tracking of humans in action: a multi-view approach , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[13]  James J. Little,et al.  Robust Visual Tracking for Multiple Targets , 2006, ECCV.

[14]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[16]  Gerd Hirzinger,et al.  Real-time visual tracking of 3D objects with dynamic handling of occlusion , 1997, Proceedings of International Conference on Robotics and Automation.

[17]  Michael Isard,et al.  Object localization by Bayesian correlation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Miguel Á. Carreira-Perpiñán,et al.  Gaussian Mean-Shift Is an EM Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[20]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[22]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[23]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[24]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[25]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[28]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[30]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[31]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[33]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.