暂无分享,去创建一个
Aapo Hyvärinen | Diederik P. Kingma | Ilyes Khemakhem | A. Hyvärinen | Ilyes Khemakhem | Aapo Hyvärinen
[1] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[2] Adi Ben-Israel,et al. The Change-of-Variables Formula Using Matrix Volume , 1999, SIAM J. Matrix Anal. Appl..
[3] Aapo Hyvärinen,et al. Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.
[4] John M. Lee. Introduction to Topological Manifolds , 2000 .
[5] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[6] Mark D. Plumbley. Algorithms for Non-Negative Independent Component Analysis , 2002 .
[7] Mark D. Plumbley. Algorithms for nonnegative independent component analysis , 2003, IEEE Trans. Neural Networks.
[8] Bernhard Schölkopf,et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.
[9] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[10] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[11] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[12] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[13] Evan M. Gordon,et al. Long-term neural and physiological phenotyping of a single human , 2015, Nature Communications.
[14] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[15] Yoshua Bengio,et al. NICE: Non-linear Independent Components Estimation , 2014, ICLR.
[16] Aapo Hyvärinen,et al. Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA , 2016, NIPS.
[17] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[18] Aapo Hyvärinen,et al. Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..
[19] Ben Poole,et al. Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.
[20] Yee Whye Teh,et al. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.
[21] Max Welling,et al. Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.
[22] Christopher Burgess,et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.
[23] Aapo Hyvärinen,et al. Nonlinear ICA of Temporally Dependent Stationary Sources , 2017, AISTATS.
[24] Bernhard Schölkopf,et al. Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .
[25] Andriy Mnih,et al. Disentangling by Factorising , 2018, ICML.
[26] Guillaume Desjardins,et al. Understanding disentangling in β-VAE , 2018, ArXiv.
[27] David Pfau,et al. Towards a Definition of Disentangled Representations , 2018, ArXiv.
[28] Roger B. Grosse,et al. Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.
[29] Yoshua Bengio,et al. Learning Independent Features with Adversarial Nets for Non-linear ICA , 2017, 1710.05050.
[30] Guillaume Desjardins,et al. Understanding disentangling in $\beta$-VAE , 2018, 1804.03599.
[31] Aapo Hyvärinen,et al. Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning , 2018, AISTATS.
[32] Aapo Hyvärinen,et al. Causal Discovery with General Non-Linear Relationships using Non-Linear ICA , 2019, UAI.
[33] Bernhard Schölkopf,et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.
[34] Georg Martius,et al. Variational Autoencoders Pursue PCA Directions (by Accident) , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[35] Dana H. Brooks,et al. Structured Disentangled Representations , 2018, AISTATS.
[36] Ole Winther,et al. BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling , 2019, NeurIPS.
[37] George Tucker,et al. Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives , 2019, ICLR.
[38] Yee Whye Teh,et al. Disentangling Disentanglement in Variational Autoencoders , 2018, ICML.