Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics

[1]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[2]  C. Bowen,et al.  The Thermodynamics of Aqueous Water Electrolysis , 1980 .

[3]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[4]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[5]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[6]  K. Onda,et al.  Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell , 2002 .

[7]  D. Bessarabov,et al.  A simple model for solid polymer electrolyte (SPE) water electrolysis , 2004 .

[8]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[9]  S. Watson,et al.  Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers , 2006 .

[10]  H. Salehfar,et al.  Semiempirical Model for Determining PEM Electrolyzer Stack Characteristics , 2006 .

[11]  A. Marshall,et al.  Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis , 2007 .

[12]  A. J. Peters,et al.  A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer , 2008 .