Engineering Study of the Hanford Low Activity Waste (LAW) Steam Reforming Process

The fluidized bed steam reforming (FBSR) technology should be further evaluated as a final waste form for Hanford LAW wastes. This technology produces stable mineralized phases which are more durable than a high sodium vitrified waste form. The mineral phases are the same as many of the phases produced in higher temperature waste forms such as supercalcine, glass-bonded ceramics, and SYNthetic ROCk (SYNROC) yet the phases are produced at moderate steam reformer operating temperatures. The mineral phases bind the radionuclide and hazardous species in cage structured mineral phases. The radionuclides and hazardous species are ionically bonded to silica and alumina tetrahedra in the structure as well as to Na ions.

[1]  R. Aines,et al.  Leaching of actinide-doped nuclear waste glass in a tuff-dominated system , 1987 .

[2]  C. Jantzen,et al.  Thermodynamic model of natural, medieval and nuclear waste glass durability , 1984 .

[3]  A. E. Ringwood,et al.  The SYNROC process: A geochemical approach to nuclear waste immobilization. , 1979 .

[4]  C. Jantzen Nuclear Waste Glass Durability: I, Predicting Environmental Response from Thermodynamic (Pourbaix) Diagrams , 1992 .

[5]  David R. Clarke,et al.  Leaching of polyphase nuclear waste ceramics: microstructural and phase characterization , 1982 .

[6]  B. Mcgrail,et al.  Waste package component interactions with Savannah River defense waste glass in a low-magnesium salt brine , 1986 .

[7]  Douglas G. Brookins,et al.  Geochemical aspects of radioactive waste disposal , 1984 .

[8]  Methods of simulating low redox potential (Eh) for a basalt repository , 1983 .

[9]  Carol M. Jantzen,et al.  Systems approach to nuclear waste glass development , 1986 .

[10]  S. Wolf,et al.  The Release of Technetium from Defense Waste Processing Facility Glasses , 1995 .

[11]  R. M. Barrer,et al.  286. The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates , 1952 .

[12]  Rodney C. Ewing,et al.  Radioactive Waste Forms for the Future , 1988 .

[13]  N. Godon,et al.  Leaching of Actinides from Nuclear Waste Glass: French Experience , 1991 .

[14]  D. Clarke,et al.  Dissolution of tailored ceramic nuclear waste forms , 1982 .

[15]  D. Škrtić,et al.  Transformation of zeolite A into hydroxysodalite: I. An approach to the mechanism of transformation and its experimental evaluation , 1980 .

[16]  C. Jantzen Radioactive waste-Portland cement systems. II: Leaching characteristics , 1984 .

[17]  G. Engelhardt,et al.  Synthesis, X-ray diffraction, and MAS n.m.r. characteristics of tetrahydroxoborate sodalite, Na8[AlSiO4]6[B(OH)4]2 , 1989 .

[18]  G. J. McCarthy,et al.  Development of Multibarrier Nuclear Waste Forms , 1979 .

[19]  L. Berry,et al.  Mineralogy: Concepts, Descriptions, Determinations , 1983 .

[20]  The Role of Groundwater Oxidation Potential and Radiolysis on Waste Glass Performance in Crystalline Repository Environments , 1985 .

[21]  Carol M. Jantzen,et al.  Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization , 2001 .

[22]  A. Winchell Elements of optical mineralogy. Part II. Descriptions of minerals , 1951 .

[23]  Elizabeth W. Baumann,et al.  Colorimetric determination of iron(II) and iron(III) in glass , 1992 .

[24]  R. Ewing,et al.  Naturally occurring crystalline phases: analogues for radioactive waste forms , 1981 .

[25]  C. Jantzen Leaching of Devitrified Glass Containing Simulated SRP Nuclear Waste , 1984 .

[26]  A. Winchell Elements Of Optical Mineralogy , 1928 .

[27]  G. J. McCarthy,et al.  Ceramic nuclear waste forms. I. Crystal chemistry and phase formation , 1975 .

[28]  F. H. Riddle AMERICAN CERAMIC SOCIETY , 1921 .

[29]  C. Jantzen Formation of Zeolite During Caustic Dissolution of Fiberglass: Implications for Studies of the Kaolinite‐to‐Mullite Transformation , 1990 .

[30]  K. M. Goff,et al.  Characterization of a Ceramic Waste Form Encapsulating Radioactive Electrorefiner Salt , 1999 .

[31]  John K. Bates,et al.  Product Consistency Leach Tests of Savannah River Site Radioactive Waste Glasses , 1989 .

[32]  Edward Salisbury Dana,et al.  A Textbook of Mineralogy , 1991 .

[33]  S. Fillet,et al.  Leaching of Actinides from the French LWR Reference Glass , 1985 .

[34]  C. Jantzen Impact of Phase Separation on Waste Glass Durability , 1999 .

[35]  A. Jurgensen,et al.  Leaching Tc-99 from SRP glass in simulated tuff and salt groundwaters , 1987 .

[36]  C. Jantzen Prediction of Glass Durability as a Function of Environmental Conditions , 1988 .

[37]  N. E. Bibler,et al.  Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass , 1994 .

[38]  Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from metakaolinite and Calcined HLW , 1999 .

[39]  Stephen G. Johnson,et al.  Characterization of a glass-bonded ceramic waste form loaded with U and Pu , 1999 .

[40]  David R. Clarke,et al.  High-alumina tailored nuclear waste ceramics , 1981 .

[41]  C. Jantzen Effects of Eh (oxidation potential) on borosilicate waste glass durability , 1984 .

[42]  M. Fleet,et al.  Structures of sodium alumino‐germanate sodalites [Na8(Al6Ge6O24)A2, A = Cl, Br, I] , 1989 .

[43]  C. M. Jantzen,et al.  The product consistency test for the DWPF wasteform , 1990 .

[44]  Dennis F. Bickford,et al.  Time-temperature-transformation kinetics in SRL waste glass , 1983 .

[45]  N. E. Bibler,et al.  Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass standard reference material , 1992 .

[46]  E. C. Subbarao,et al.  Advances in Ceramics , 1981 .

[47]  Werner Lutze,et al.  Scientific basis for nuclear waste management , 1979 .

[48]  C. M. Jantzen,et al.  First principles process-product models for vitrification of nuclear waste: Relationship of glass composition to glass viscosity, resistivity, liquidus temperature, and durability , 1991 .

[49]  Physical, chemical, and structural evolution of zeolite-containing waste forms produced from metakaolinite and calcined HLW , 1999 .

[50]  C. Jantzen Glass melter off-gas system pluggages: Cause, significance, and remediation , 1991 .

[51]  C. Jantzen,et al.  Radioactive Waste‐Portland Cement Systems: I, Radionuclide Distribution , 1984 .

[52]  M. Steindler,et al.  Extended leach studies of actinide-doped SRL 131 glass , 1982 .

[53]  L. Morss,et al.  Corrosion of glass-bonded sodalite as a function of pH and temperature. , 1999 .

[54]  R. Klingenberg,et al.  Interstitial cristobalite-type compounds (Na2O)≤0.33Na[AlSiO4] , 1986 .

[55]  D. J. Bradley,et al.  Leaching of actinides and technetium from simulated high-level waste glass , 1979 .

[56]  W. M. Meier,et al.  36. Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues , 1959 .