Adding handles to the helicoid

There exist two new embedded minimal surfaces, asymptotic to the helicoid. One is periodic, with quotient (by orientation-preserving translations) of genus one. The other is nonperiodic of genus one

[1]  W. Meeks,et al.  Embedded minimal surfaces of finite topology , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[2]  R. Osserman A survey of minimal surfaces , 1969 .

[3]  The global theory of doubly periodic minimal surfaces , 1989 .

[4]  Johannes C. C. Nitsche,et al.  Lectures on minimal surfaces: vol. 1 , 1989 .

[5]  Michael J. Callahan,et al.  Computer graphics tools for the study of minimal surfaces , 1988, CACM.

[6]  Francisco J. López,et al.  On embedded complete minimal surfaces of genus zero , 1991 .

[7]  I. Peterson Three Bites in a Doughnut , 1985 .

[8]  Fu-Tsun Wei Some existence and uniqueness theorems for doubly periodic minimal surfaces , 1992 .

[9]  M. Wohlgemuth Higher genus minimal surfaces by growing handles out of a catenoid , 1991 .

[10]  H. Scherk Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. , 1835 .

[11]  Embedded minimal surfaces, computer graphics and elliptic functions , 1985 .

[12]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[13]  David Hoffman,et al.  Minimal surfaces based on the catenoid , 1990 .

[14]  R. Osserman Global Properties of Minimal Surfaces in E 3 and E n , 1964 .

[15]  C. Costa Example of a complete minimal immersion in IR3 of genus one and three-embedded ends , 1984 .

[16]  R. Schoen Uniqueness, symmetry, and embeddedness of minimal surfaces , 1983 .

[17]  H. Karcher Embedded minimal surfaces derived from Scherk's examples , 1988 .

[18]  A. Ros Embedded Minimal Surfaces with Finite Topology , 2022 .