Infrared absorbance of silicene and germanene

Calculating the complex dielectric function for optical interband transitions we show that the two-dimensional crystals silicene and germanene possess the same low-frequency absorbance as graphene. It is determined by the Sommerfeld finestructure constant. Deviations occur for higher frequencies when the first interband transitions outside K or K′ contribute. The low-frequency results are a consequence of the honeycomb geometry but do not depend on the group-IV atom, the sheet buckling, and the orbital hybridization. The two-dimensional crystals may be useful as absorption normals in silicon technology.

[1]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[2]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[3]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[4]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[5]  V. P. Gusynin,et al.  AC CONDUCTIVITY OF GRAPHENE: FROM TIGHT-BINDING MODEL TO 2 + 1-DIMENSIONAL QUANTUM ELECTRODYNAMICS , 2007, 0706.3016.

[6]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[7]  C. Ottaviani,et al.  Evidence of graphene-like electronic signature in silicene nanoribbons , 2010 .

[8]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[9]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[10]  Li Yang,et al.  Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical Review Letters.

[11]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[12]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[13]  Riichiro Saito,et al.  Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes , 2003 .

[14]  V. P. Gusynin,et al.  Transport of Dirac quasiparticles in graphene: Hall and optical conductivities , 2006 .

[15]  A. Farajian,et al.  Hydrogen compounds of group-IV nanosheets , 2010, 1007.2110.

[16]  F. Bechstedt,et al.  Side-dependent electron escape from graphene- and graphane-like SiC layers , 2012 .

[17]  N. Peres,et al.  Optical conductivity of graphene in the visible region of the spectrum , 2008, 0803.1802.

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[20]  H. Eschrig,et al.  Electronic structure of solids '91 : proceedings of the 75. WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, held in Gaussig (Germany), March 11-15, 1991 , 1991 .

[21]  T. Ando,et al.  Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices , 2002 .

[22]  A. Farajian,et al.  Ab initio simulations of silicene hydrogenation , 2011 .

[23]  F. Bechstedt,et al.  Nonlocality and many-body effects in the optical properties of semiconductors. , 1996, Physical review. B, Condensed matter.