Rough paths in idealized financial markets

This paper considers possible price paths of a financial security in an idealized market. Its main result is that the variation index of typical price paths is at most 2; in this sense, typical price paths are not rougher than typical paths of Brownian motion. We do not make any stochastic assumptions and only assume that the price path is right-continuous. The qualification “typical” means that there is a trading strategy (constructed explicitly in the proof) that risks only one monetary unit but brings infinite capital when the variation index of the realized price path exceeds 2. The paper also reviews some known results for continuous price paths.

[1]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[2]  R. M. Dudley,et al.  Concrete Functional Calculus , 2010 .

[3]  Rimas Norvaisa Modelling of stock price changes: A real analysis approach , 2000, Finance Stochastics.

[4]  F. Su The Banach-Tarski Paradox , 1990 .

[5]  David Oakes,et al.  Self-Calibrating Priors Do Not Exist , 1985 .

[6]  R. Norvaiša Rough functions: p-Variation, calculus, and index estimation , 2006 .

[7]  A. Shiryaev Essentials of stochastic finance , 1999 .

[8]  F. Delbaen Probability and Finance: It's Only a Game! , 2002 .

[9]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[10]  T. Cover Universal Portfolios , 1996 .

[11]  A. Dawid Self-Calibrating Priors Do Not Exist: Comment , 1985 .

[12]  Rimas Norvaisa,et al.  Quadratic variation, p-variation and integration with applications to stock price modelling , 2001, math/0108090.

[13]  Kei Takeuchi,et al.  A new formulation of asset trading games in continuous time with essential forcing of variation exponent , 2007, 0708.0275.

[14]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[15]  G. Shafer,et al.  Probability and Finance: It's Only a Game! , 2001 .

[16]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[17]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[18]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[19]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[20]  M. Duflo,et al.  Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de régression , 1990 .

[21]  D. Lépingle,et al.  La variation d'ordre p des semi-martingales , 1976 .

[22]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[23]  Stephen Taylor,et al.  Exact asymptotic estimates of Brownian path variation , 1972 .

[24]  Rimas Norvai Modelling of stock price changes: A real analysis approach , 2000 .

[25]  Vladimir Vovk,et al.  Continuous-time trading and the emergence of volatility , 2008 .

[26]  Thomas M. Cover,et al.  Some equivalences between Shannon entropy and Kolmogorov complexity , 1978, IEEE Trans. Inf. Theory.

[27]  Donna Salopek,et al.  Tolerance to Arbitrage , 1998 .

[28]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[29]  L. Dubins,et al.  ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Vladimir Vovk,et al.  Continuous-time trading and the emergence of probability , 2009, Finance and Stochastics.

[31]  C. Stricker,et al.  Sur la p-variation des surmartingales , 1979 .