Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure

We developed lead halide perovskite quantum dot (QD) solar cells with a combinational absorbing layer based on stacked α-CsPbI3 and FAPbI3. α-CsPbI3 QDs, with a relatively wide bandgap of 1.75 eV, ...

[1]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[2]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[3]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[4]  J. Brédas,et al.  Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. , 2018, The journal of physical chemistry letters.

[5]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[6]  Ashley R. Marshall,et al.  Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. , 2018, ACS nano.

[7]  G. Konstantatos,et al.  High-Open-Circuit-Voltage Solar Cells Based on Bright Mixed-Halide CsPbBrI2 Perovskite Nanocrystals Synthesized under Ambient Air Conditions , 2018, 1901.10303.

[8]  Cherie R. Kagan,et al.  Charge transport in strongly coupled quantum dot solids. , 2015, Nature nanotechnology.

[9]  G. Wang,et al.  µ‐Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability , 2018 .

[10]  A. Marini,et al.  The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. , 2015, Nano letters.

[11]  Jun Liu,et al.  High efficiency perovskite quantum dot solar cells with charge separating heterostructure , 2019, Nature Communications.

[12]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[13]  J. Kido,et al.  Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices , 2018, Nature Photonics.

[14]  Matthew C Beard,et al.  The promise and challenge of nanostructured solar cells. , 2014, Nature nanotechnology.

[15]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[16]  Rui Wang,et al.  A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13% , 2019, Advanced materials.

[17]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[18]  Florian Hoegl,et al.  Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals. , 2017, Nano letters.

[19]  S. Mannsfeld,et al.  Quantitative determination of organic semiconductor microstructure from the molecular to device scale. , 2012, Chemical reviews.

[20]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[21]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[22]  Haotong Wei,et al.  Polymer‐Passivated Inorganic Cesium Lead Mixed‐Halide Perovskites for Stable and Efficient Solar Cells with High Open‐Circuit Voltage over 1.3 V , 2018, Advanced materials.

[23]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[24]  P. Kamat,et al.  CsPbBr3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition , 2017 .

[25]  Rachel C. Kurchin,et al.  Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening , 2017 .

[26]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[27]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[28]  Jinsong Hu,et al.  Congeneric Incorporation of CsPbBr3 Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement , 2018 .

[29]  John T. M. Kennis,et al.  Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems , 2009, Photosynthesis Research.

[30]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[31]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[32]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[33]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[34]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[35]  Jianyu Yuan,et al.  14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation , 2019, Advanced Energy Materials.

[36]  Rui Wang,et al.  Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells , 2018, Joule.

[37]  X. Zu,et al.  α-CsPbI3 Colloidal Quantum Dots: Synthesis, Photodynamics, and Photovoltaic Applications , 2019, ACS Energy Letters.

[38]  Edward H. Sargent,et al.  Colloidal quantum dot solids for solution-processed solar cells , 2016, Nature Energy.

[39]  Z. Yin,et al.  Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells , 2018, Nature Communications.

[40]  Xingyu Gao,et al.  Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells , 2018, Joule.

[41]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[42]  O. Bakr,et al.  Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells , 2019, Chemistry of Materials.

[43]  A. Ho-baillie,et al.  Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells , 2019, Joule.

[44]  Wen Chen,et al.  Short‐Chain Ligand‐Passivated Stable α‐CsPbI3 Quantum Dot for All‐Inorganic Perovskite Solar Cells , 2019, Advanced Functional Materials.

[45]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.