Engineering of citrus to obtain huanglongbing resistance.

[1]  H. Bouwmeester,et al.  Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing , 2021, Frontiers in Plant Science.

[2]  Hailing Jin,et al.  A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing , 2021, Proceedings of the National Academy of Sciences.

[3]  P. Ollitrault,et al.  Resistance to ‘Candidatus Liberibacter asiaticus,’ the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives , 2021, Frontiers in Plant Science.

[4]  Qing-wen Zhang,et al.  Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis , 2021, Plant Cell Reports.

[5]  S. Lopes,et al.  Evidence That 'Candidatus Liberibacter asiaticus' Moves Predominantly Toward New Tissue Growth in Citrus Plants. , 2020, Plant disease.

[6]  M. Irey,et al.  Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. , 2020, Nature Communications.

[7]  N. Zhang,et al.  Repellency of forty‐one aromatic plant species to the Asian citrus psyllid, vector of the bacterium associated with huanglongbing , 2020, Ecology and Evolution.

[8]  Hailing Jin,et al.  Identification of citrus immune regulators involved in defence against Huanglongbing using a new functional screening system , 2020, Plant biotechnology journal.

[9]  Jinyun Li,et al.  Census of Candidatus Liberibacter asiaticus population inside the phloem of citrus trees. , 2020, Phytopathology.

[10]  Jong-Won Park,et al.  Root samples provide early and improved detection of Candidatus Liberibacter asiaticus in Citrus , 2020, Scientific Reports.

[11]  S. He,et al.  Citrus CsACD2 Is a Target of Candidatus Liberibacter Asiaticus in Huanglongbing Disease. , 2020, Plant physiology.

[12]  Jessica Trinh,et al.  Sec-delivered effector 1 (SDE1) of Candidatus Liberibacter asiaticus promotes citrus Huanglongbing. , 2020, Molecular plant-microbe interactions : MPMI.

[13]  S. Shu,et al.  A chromosome‐scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus , 2020, The Plant journal : for cell and molecular biology.

[14]  Li Yang,et al.  A Transcriptomic and Proteomic Analysis of the Diaphorina citri Salivary Glands Reveals Genes Responding to Candidatus Liberibacter asiaticus , 2020, Frontiers in Physiology.

[15]  J. Borneman,et al.  Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts , 2020, npj Systems Biology and Applications.

[16]  J. Lopes,et al.  Selection of Bacillus thuringiensis strains in citrus and their pathogenicity to Diaphorina citri (Hemiptera: Liviidae) nymphs , 2020, Insect science.

[17]  N. Killiny,et al.  RNA interference-mediated control of Asian citrus psyllid, the vector of the huanglongbing bacterial pathogen , 2020, Tropical Plant Pathology.

[18]  S. Lopes,et al.  Overview of citrus huanglongbing spread and management strategies in Brazil , 2020, Tropical Plant Pathology.

[19]  N. Maluta,et al.  Gene silencing of Diaphorina citri candidate effectors promotes changes in feeding behaviors , 2020, Scientific Reports.

[20]  G. Coaker,et al.  Genome‐wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors , 2020, Molecular plant pathology.

[21]  J. Bai,et al.  Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control , 2020, Proceedings of the National Academy of Sciences.

[22]  J. George,et al.  Feeding Behavior of Asian Citrus Psyllid [Diaphorina citri (Hemiptera: Liviidae)] Nymphs and Adults on Common Weeds Occurring in Cultivated Citrus Described Using Electrical Penetration Graph Recordings , 2020, Insects.

[23]  Yuan Chen,et al.  Comparative genomics screen identifies microbe-associated molecular patterns from Candidatus Liberibacter sp. that elicit immune responses in plants. , 2019, Molecular plant-microbe interactions : MPMI.

[24]  S. He,et al.  Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens , 2019, Proceedings of the National Academy of Sciences.

[25]  L. Peña,et al.  Murraya paniculata and Swinglea glutinosa as short-term transient hosts of 'Candidatus Liberibacter asiaticus' and implications for spread of huanglongbing. , 2019, Phytopathology.

[26]  Xiaobao Ying,et al.  Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus , 2019, International journal of molecular sciences.

[27]  E. Stover,et al.  Survey of Poncirus trifoliata Hybrids for Resistance to Colonization by Asian Citrus Psyllid , 2019, Florida Entomologist.

[28]  S. Long,et al.  A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators , 2019, Proceedings of the National Academy of Sciences.

[29]  D. Gabriel,et al.  Liberibacter crescens is a cultured surrogate for functional genomics of uncultured pathogenic 'Candidatus Liberibacter' spp. and is naturally competent for transformation. , 2019, Phytopathology.

[30]  L. Peña,et al.  Unsuitability of indigenous South American Rutaceae as potential hosts of Diaphorina citri. , 2019, Pest management science.

[31]  L. Stelinski,et al.  Secondary hosts of the Asian citrus psyllid, Diaphorina citri Kuwayama: Survivorship and preference , 2019, Journal of Applied Entomology.

[32]  Mukesh Jain,et al.  Progress and Obstacles in Culturing 'Candidatus Liberibacter asiaticus', the Bacterium Associated with Huanglongbing. , 2019, Phytopathology.

[33]  E. Stover,et al.  Transgenic citrus plants expressing a ‘Candidatus Liberibacter asiaticus’ prophage protein LasP235 display Huanglongbing-like symptoms , 2019, Agri Gene.

[34]  E. Stover,et al.  Temporal and spatial detection of Candidatus Liberibacter asiaticus putative effector transcripts during interaction with Huanglongbing-susceptible, −tolerant, and -resistant citrus hosts , 2019, BMC Plant Biology.

[35]  B. Bonning,et al.  Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera) , 2019, Toxins.

[36]  E. Stover,et al.  Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus , 2018, Front. Plant Sci..

[37]  N. Killiny,et al.  The secreted salivary proteome of Asian citrus psyllid Diaphorina citri , 2018, Physiological Entomology.

[38]  G. Lorca,et al.  Understanding the Physiology of Liberibacter asiaticus: An Overview of the Demonstrated Molecular Mechanisms , 2018, Journal of Molecular Microbiology and Biotechnology.

[39]  J. George,et al.  Host-plant resistance associated with Poncirus trifoliata influence oviposition, development and adult emergence of Diaphorina citri (Hemiptera: Liviidae). , 2018, Pest management science.

[40]  Yinsheng Wang,et al.  An effector from the Huanglongbing-associated pathogen targets citrus proteases , 2018, Nature Communications.

[41]  E. Stover,et al.  Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus , 2017, PloS one.

[42]  Leandro Peña,et al.  UvA-DARE ( Digital Academic Repository )-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri , vector of Candidatus , 2017 .

[43]  Xiuping Zou,et al.  Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing , 2017, Plant Molecular Biology.

[44]  E. Stover,et al.  Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB) , 2016, Front. Plant Sci..

[45]  Richard F. Lee,et al.  Long-Term Field Evaluation Reveals Huanglongbing Resistance in Citrus Relatives. , 2016, Plant disease.

[46]  N. Killiny,et al.  Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). , 2014, Journal of biotechnology.

[47]  S. Lopes,et al.  Reaction of sweet orange cultivars expressing the attacin A gene to 'Candidatus Liberibacter asiaticus' infection , 2013 .

[48]  R. Rouseff,et al.  Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism. , 2008, Journal of agricultural and food chemistry.

[49]  T. Gottwald,et al.  Bacterial pathogens of citrus: Citrus canker, citrus variegated chlorosis and Huanglongbing , 2020 .

[50]  V. Orbović,et al.  Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing , 2018 .

[51]  W. Hunter,et al.  Emerging RNA Suppression Technologies to Protect Citrus Trees From Citrus Greening Disease Bacteria , 2018 .

[52]  Goutam Gupta NOVEL THERAPY OF HIGH-PRIORITY CITRUS DISEASES , 2014 .