Discovering Implicational Knowledge in Wikidata

Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata.

[1]  Nicolas Pasquier,et al.  Closed Set Based Discovery of Small Covers for Association Rules , 1999, Proc. 15èmes Journées Bases de Données Avancées, BDA.

[2]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[3]  Markus Krötzsch,et al.  Logic on MARS: Ontologies for Generalised Property Graphs , 2017, IJCAI.

[4]  Luca Vassio,et al.  You, the Web, and Your Device , 2018, ACM Trans. Web.

[5]  Gerd Stumme Conceptual knowledge discovery with frequent concept lattices , 1999 .

[6]  Yves Bastide,et al.  Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis , 2001, KI/ÖGAI.

[7]  Sebastian Rudolph,et al.  Exploring Relational Structures Via FLE , 2004, ICCS.

[8]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[9]  Elena Paslaru Bontas Simperl,et al.  Who Models the World? , 2018, Proceedings of the ACM on Human-Computer Interaction.

[10]  Denny Vrandecic,et al.  Wikidata: a new platform for collaborative data collection , 2012, WWW.

[11]  Bernhard Ganter,et al.  Conceptual Exploration , 2016, Springer Berlin Heidelberg.

[12]  Simon Razniewski,et al.  Predicting Completeness in Knowledge Bases , 2016, WSDM.

[13]  Mehwish Alam,et al.  Mining Definitions from RDF Annotations Using Formal Concept Analysis , 2015, IJCAI.

[14]  Eva Zangerle,et al.  An Empirical Evaluation of Property Recommender Systems for Wikidata and Collaborative Knowledge Bases , 2016, OpenSym.

[15]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Association Rule Mining , 2007 .

[16]  Simon Razniewski,et al.  Completeness-Aware Rule Learning from Knowledge Graphs , 2017, SEMWEB.

[17]  Aidan Hogan,et al.  Modelling Dynamics in Semantic Web Knowledge Graphs with Formal Concept Analysis , 2018, WWW.

[18]  Markus Krötzsch,et al.  Ontologies for Knowledge Graphs? , 2017, Description Logics.

[19]  Fabian M. Suchanek,et al.  Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.

[20]  Werner Nutt,et al.  Completeness Management for RDF Data Sources , 2018, ACM Trans. Web.

[21]  Philip A. Bernstein,et al.  Computational problems related to the design of normal form relational schemas , 1979, TODS.

[22]  Markus Krötzsch,et al.  SQID: Towards Ontological Reasoning for Wikidata , 2017, International Workshop on the Semantic Web.

[23]  Werner Nutt,et al.  COOL-WD: A Completeness Tool for Wikidata , 2017, International Semantic Web Conference.

[24]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[25]  Mehwish Alam,et al.  Interactive exploration over RDF data using formal concept analysis , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[26]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[27]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[28]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[29]  Fabian M. Suchanek,et al.  Are All People Married?: Determining Obligatory Attributes in Knowledge Bases , 2018, WWW.

[30]  Gianluca Demartini,et al.  The Evolution of Power and Standard Wikidata Editors: Comparing Editing Behavior over Time to Predict Lifespan and Volume of Edits , 2018, Computer Supported Cooperative Work (CSCW).

[31]  Sergei O. Kuznetsov,et al.  Recognizing Pseudo-intents is coNP-complete , 2010, CLA.

[32]  Tom Hanika,et al.  On the Usability of Probably Approximately Correct Implication Bases , 2017, ICFCA.

[33]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[34]  F. Mathematik Conceptual Knowledge Discovery with Frequent Concept Lattices , 1999 .

[35]  Sébastien Ferré,et al.  A Proposal for Extending Formal Concept Analysis to Knowledge Graphs , 2015, ICFCA.

[36]  Evgeny Kharlamov,et al.  Rule Learning from Knowledge Graphs Guided by Embedding Models , 2018, SEMWEB.

[37]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .