Fast adaptive interpolation of multi-dimensional arrays in tensor train format
暂无分享,去创建一个
[1] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[2] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[3] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[4] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[5] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[6] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[7] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[8] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[9] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[10] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[11] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[12] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[13] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[14] I. V. Oseledets,et al. Fast Simultaneous Orthogonal Reduction to Triangular Matrices , 2009, SIAM J. Matrix Anal. Appl..
[15] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[16] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[17] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[18] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[19] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[20] S. Goreinov,et al. How to find a good submatrix , 2010 .
[21] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[22] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[23] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[24] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[25] W. Hackbusch,et al. Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .
[26] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[27] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[28] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[29] Östlund,et al. Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.