Fast adaptive interpolation of multi-dimensional arrays in tensor train format

Using recently proposed tensor train format for the representation of multi-dimensional dense arrays (tensors) we develop a fast interpolation method to approximate the given tensor by using only a small number of its elements. The algorithm is based on DMRG scheme, known among the quantum chemistry society. It is modified to make an interpolation on the adaptive set of tensor elements. The latter is selected using the maximum-volume principle which was previously used for the cross approximation schemes for matrices and 3-tensors. The numerical examples includes the interpolation of one- and many-dimensional functions on the uniform grids.

[1]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[2]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[3]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[4]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[5]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[6]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[7]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[8]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[9]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[10]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[13]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[14]  I. V. Oseledets,et al.  Fast Simultaneous Orthogonal Reduction to Triangular Matrices , 2009, SIAM J. Matrix Anal. Appl..

[15]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[16]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[17]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[18]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[19]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[20]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[21]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[22]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[23]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[24]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[25]  W. Hackbusch,et al.  Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .

[26]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[27]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[28]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[29]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.