Synchrotron Emission from Shock Waves in Active Galactic Nuclei

The origin of the sharp near infrared cutoff in the continuous energy distribution of many compact non-thermal sources (BL Lacs, OVVs, red quasars and certain jets) is considered under the assumption that particle acceleration takes place in shocks. This model predicts a highest frequency v* of electron synchrotron emission which depends principally on the shock velocity and the ratio a of photon to magnetic energy density in the acceleration region. For near relativistic flows and reasonable values of a a spectral cutoff is predicted in the range 3 1014 < v < 2 1015 Hz. The model thus leads to 1) near relativistic flows, 2) a gradual steepening of optical continuum spectra as one follows a jet outwards, 3) a correlation between spectral hardening and luminosity, 4) a correlation between optical spectrum and X-ray emission, 5) a possible synchrotron contribution to the X-ray emission in Quasars from secondary particles, and 6) the production of very high energy particles such as observed in cosmic rays, of up to ~1012 GeV.

[1]  G. Webb Hydrodynamical constraints on cosmic-ray acceleration in relativistic shocks , 1987 .

[2]  Klaus Meisenheimer,et al.  A bright optical synchrotron counterpart of the western hot spot in Pictor A , 1987 .

[3]  A. Heavens,et al.  Particle acceleration in extragalactic sources: the role of synchrotron losses in determining the spectrum , 1987 .

[4]  R. Diehl,et al.  Centaurus A observation at MeV-gamma-ray energies , 1987 .

[5]  A. Heavens,et al.  Particle acceleration in the hotspot of the jet of quasar 3C273 , 1986, Nature.

[6]  S. Simkin Optical spectroscopy of the southwest radio lobe in 3C 33 , 1986 .

[7]  A. Zdziarski On the origin of the infrared and X-ray continua of active galactic nuclei , 1986 .

[8]  W. Keel The jet of PKS 0521 - 36 - an aging counterpart of M87? , 1986 .

[9]  K. Meisenheimer,et al.  Optical synchrotron emission in the southern lobe of 3C33 , 1986, Nature.

[10]  K. Meisenheimer,et al.  CCD photo-polarimetry of the jet of 3C273 , 1986 .

[11]  I. Pérez-Fournon,et al.  A shock model for quasars and active galactic nuclei , 1986 .

[12]  S. Odell,et al.  The radio-optical-X-ray spectral flux distributions of blazars , 1985 .

[13]  K. Johnston,et al.  Milliarcsecond structure of 1928 + 738 - apparent superluminal motion along an extended jet , 1985 .

[14]  Claes-lngvar Björnsson Frequency-dependent polarization in blazars , 1985 .

[15]  G. Webb,et al.  Relativistic transport theory for cosmic rays , 1985 .

[16]  Gaisser,et al.  Calculation of neutrino flux from Cygnus X-3. , 1985, Physical review letters.

[17]  J. Bregman Diffusive shock acceleration and quasar photospheres , 1985 .

[18]  S. M. Scarrott,et al.  Polarimetry and photometry of M87: is the jet fading? , 1984 .

[19]  L. Drury,et al.  Diffusive shock acceleration of energetic electrons subject to synchrotron losses , 1984 .

[20]  William H. Matthaeus,et al.  Power spectral signatures of interplanetary corotating and transient flows , 1984 .

[21]  G. Bourgois,et al.  Slow scintillation in the interstellar medium. , 1984 .

[22]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .

[23]  G. Hasinger,et al.  The high energy X-ray spectrum of 3C 273 , 1984 .

[24]  R. Schlickeiser An explanation of abrupt cutoffs in the optical-infrared spectra of a non-thermal sources. A new pile-up mechanism for relativistic electron spectra , 1984 .

[25]  Alan H. Bridle,et al.  Extragalactic Radio Jets , 1984 .

[26]  M. Sitko,et al.  0.35-3.5 MICRON PHOTOMETRY OF POLARIZED QSOS. , 1983 .

[27]  S. Bowyer,et al.  The Discovery of Optical Emission Knots in the Inner Jet of Centaurus A , 1983 .

[28]  L. Drury An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[29]  W. Matthaeus,et al.  Turbulence Analysis of the Jovian Upstream 'Wave' Phenomenon , 1983 .

[30]  G. Rieke,et al.  Abrupt cutoffs in the optical-infrared spectra of nonthermal sources , 1982 .

[31]  William H. Matthaeus,et al.  Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind , 1982 .

[32]  W. Matthaeus,et al.  Evaluation of magnetic helicity in homogeneous turbulence , 1982 .

[33]  G. Rieke,et al.  New observational constraints on the M87 jet , 1981, Nature.

[34]  P. J. Huggins,et al.  Multifrequency observations of the red QSO 1413 + 135 , 1981, Nature.

[35]  I. Pauliny-Toth,et al.  Compact Radio Sources , 1981 .

[36]  J. Angel,et al.  Optical and Infrared Polarization of Active Extragalactic Objects , 1980 .

[37]  J. Lorre,et al.  Some properties of the knots in the M87 jet , 1979 .

[38]  G. Rieke,et al.  A possible new type of QSO identified through infrared measurements. , 1979 .

[39]  D. Eichler High-energy neutrino astronomy: A probe of galactic nuclei , 1979 .

[40]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[41]  R. Sagdeev The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics. I. Turbulence and nonlinear waves , 1979 .

[42]  S. Simkin Optical emission in the SW radio lobe of 3C 33 , 1978 .

[43]  G. Rieke,et al.  Photometric and spectroscopic observations of the BL Lacertae object AO 0235+164 , 1976, Nature.

[44]  J. Thompson,et al.  Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV , 1972 .

[45]  F. Stecker,et al.  Effect of photomeson production by the universal radiation field on high-energy cosmic rays , 1968 .

[46]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[47]  Enrico Fermi,et al.  Galactic Magnetic Fields and the Origin of Cosmic Radiation. , 1954 .

[48]  Enrico Fermi,et al.  On the Origin of the Cosmic Radiation , 1949 .

[49]  W. Heisenberg,et al.  Zur statistischen Theorie der Turbulenz , 1948 .