Precipitation data fusion using vector space transformation and artificial neural networks

We have developed a new methodology to fuse several precipitation datasets, available from different estimation techniques. The method is based on artificial neural networks and vector space transformation function. The final merged product is statistically superior to any of the individual datasets over a seasonal period. The results have been tested against ground-based measurements of rainfall over a study area. This method is shown to have average success rates of 85% in the summer, 68% in the fall, 77% in the spring, and 55% in the winter.

[1]  R. Scofield,et al.  The Operational GOES Infrared Rainfall Estimation Technique , 1998 .

[2]  David J. Briggs,et al.  Fundamentals of Physical Geography , 1985 .

[3]  F. Woodcock On the Use of Analogues to Improve Regression Forecasts , 1980 .

[4]  Atul Negi,et al.  Multisensor Data Fusion Using Neural Networks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[5]  V. Levizzani Satellite Clouds and Precipitation Observations for Meteorology and Climate , 2009 .

[6]  Jirí Benes,et al.  On neural networks , 1990, Kybernetika.

[7]  Nageswara S. V. Rao,et al.  Multisensor Fusion under Unknown Distributions Finite-Sample Performance Guarantees , 2002 .

[8]  F. Joseph Turk,et al.  Measuring Precipitation from Space: EURAINSAT and the Future , 2007 .

[9]  Ying Zhou,et al.  Neural Network-based Multi-Sensor Fusion for Security Management , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[10]  P. S. Sastry,et al.  Analysis of the back-propagation algorithm with momentum , 1994, IEEE Trans. Neural Networks.

[11]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[12]  F. Woodcock,et al.  The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes , 1976 .

[13]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[14]  James T. Kwok,et al.  Efficient cross-validation for feedforward neural networks , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[15]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[16]  Abhijit S. Pandya,et al.  Pattern Recognition with Neural Networks in C++ , 1995 .

[17]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[18]  Y. Hong,et al.  Merging multiple precipitation sources for flash flood forecasting , 2007 .

[19]  F. Joseph Turk,et al.  Evaluating High-Resolution Precipitation Products , 2008 .

[20]  Witold F. Krajewski,et al.  Evaluating NEXRAD Multisensor Precipitation Estimates for Operational Hydrologic Forecasting , 2000 .

[21]  M. Nirala Optimal precipitation estimation using multisensor microwave datasets , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[22]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[23]  R. Scofield,et al.  Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events , 2003 .

[24]  Robert J. Kuligowski,et al.  A Self-Calibrating Real-Time GOES Rainfall Algorithm for Short-Term Rainfall Estimates , 2002 .

[25]  James Llinas,et al.  An introduction to multi-sensor data fusion , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[26]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Valentine G. Anantharaj,et al.  The NRL-Blend High Resolution Precipitation Product and its Application to Land Surface Hydrology , 2010 .