Macromolecular networks and intelligence in microorganisms

Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.

[1]  L. Alberghina,et al.  Systems Biology: Definitions and Perspectives , 2005 .

[2]  Maureen A. O’Malley,et al.  Towards a philosophy of microbiology. , 2007, Studies in history and philosophy of biological and biomedical sciences.

[3]  Facundo Manes,et al.  Decision-making cognition in neurodegenerative diseases , 2010, Nature Reviews Neurology.

[4]  Yuan-ming Luo,et al.  Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon , 2012, The ISME Journal.

[5]  D. Relman,et al.  The meaning and impact of the human genome sequence for microbiology. , 2001, Trends in microbiology.

[6]  Rick C. Looijen Holism and Reductionism in Biology and Ecology , 2000 .

[7]  Patrice D Cani,et al.  Diabetes, obesity and gut microbiota. , 2013, Best practice & research. Clinical gastroenterology.

[8]  T. Elston,et al.  Systems biology analysis of G protein and MAP kinase signaling in yeast , 2007, Oncogene.

[9]  Drew Endy,et al.  Determination of cell fate selection during phage lambda infection , 2008, Proceedings of the National Academy of Sciences.

[10]  H. Levine,et al.  Bacterial linguistic communication and social intelligence. , 2004, Trends in microbiology.

[11]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of neurosciences.

[12]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[13]  T. Ueda,et al.  Interaction between cell shape and contraction pattern in the Physarum plasmodium. , 2000, Biophysical chemistry.

[14]  H. Westerhoff,et al.  Control theory of regulatory cascades. , 1991, Journal of theoretical biology.

[15]  H. Westerhoff,et al.  Thermodynamics and Control of Biological Free-Energy Transduction , 1987 .

[16]  K. Nickerson,et al.  Quorum Sensing in Dimorphic Fungi: Farnesol and Beyond , 2006, Applied and Environmental Microbiology.

[17]  Chunmei Zhai,et al.  Does Microcystis aeruginosa have quorum sensing? , 2012, FEMS microbiology letters.

[18]  Robert T Sauer,et al.  Engineering controllable protein degradation. , 2006, Molecular cell.

[19]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[20]  Saeed Tavazoie,et al.  Predictive Behavior Within Microbial Genetic Networks , 2008, Science.

[21]  H. Westerhoff,et al.  Understanding Principles of the Dynamic Biochemical Networks of Life Through Systems Biology , 2014 .

[22]  E. Klipp,et al.  Modelling signalling pathways-A yeast approach , 2005 .

[23]  N. Baliga,et al.  Adaptation of cells to new environments , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[24]  Toshiyuki Nakagaki,et al.  A Method Inspired by Physarum for Solving the Steiner Problem , 2010, Int. J. Unconv. Comput..

[25]  T. Dinan,et al.  Mind-altering Microorganisms: the Impact of the Gut Microbiota on Brain and Behaviour , 2022 .

[26]  Vincent Fromion,et al.  (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis , 2013, BMC Systems Biology.

[27]  D. C. Wood,et al.  Is tube-escape learning by protozoa associative learning? , 1994, Behavioral neuroscience.

[28]  A. M. Tarone,et al.  Proteus mirabilis interkingdom swarming signals attract blow flies , 2012, The ISME Journal.

[29]  Holism and Reductionism in Biology and Ecology: The Mutual Dependence of Higher and Lower Level Research Programmes , 1999 .

[30]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[31]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[32]  P R Patnaik,et al.  Are microbes intelligent beings?: An assessment of cybernetic modeling. , 2000, Biotechnology advances.

[33]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[34]  Pamela Lyon,et al.  The biogenic approach to cognition , 2006, Cognitive Processing.

[35]  G. Donelli,et al.  Microbial Biofilms , 2014, Methods in Molecular Biology.

[36]  Phil Husbands,et al.  Evolution of Associative Learning in Chemical Networks , 2012, PLoS Comput. Biol..

[37]  Alexandre Antonelli,et al.  The origin of multicellularity in cyanobacteria , 2011, BMC Evolutionary Biology.

[38]  Kathryn A. Ingle,et al.  Reverse Engineering , 1996, Springer US.

[39]  K. Luan Phan,et al.  The contextual brain: implications for fear conditioning, extinction and psychopathology , 2013, Nature Reviews Neuroscience.

[40]  J. Xavier Social interaction in synthetic and natural microbial communities , 2011, Molecular systems biology.

[41]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[42]  F. Bruggeman,et al.  Trade‐off of dynamic fragility but not of robustness in metabolic pathways in silico , 2013, The FEBS journal.

[43]  H. Westerhoff,et al.  Molecular Machines and Energy Channelling , 1986 .

[44]  F. Bruggeman,et al.  Macromolecular Intelligence in Microorganisms , 2000, Biological chemistry.

[45]  Peter Ruhdal Jensen,et al.  DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. , 2002, European journal of biochemistry.

[46]  Hans V. Westerhoff,et al.  Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective , 2013, Microbiology and Molecular Reviews.

[47]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[48]  S. Elena,et al.  Computational design of genomic transcriptional networks with adaptation to varying environments , 2012, Proceedings of the National Academy of Sciences.

[49]  Gabriel C. Wu,et al.  Synthetic protein scaffolds provide modular control over metabolic flux , 2009, Nature Biotechnology.

[50]  Hans V. Westerhoff,et al.  Dynamical and hierarchical coupling , 1990 .

[51]  R. Feynman Simulating physics with computers , 1999 .

[52]  J. Gallon,et al.  Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909 , 2008, The ISME Journal.

[53]  Ann M Stock,et al.  Molecular Information Processing: Lessons from Bacterial Chemotaxis* , 2002, The Journal of Biological Chemistry.

[54]  Jerome T. Mettetal,et al.  The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae , 2008, Science.

[55]  Hans Soest Dressurversuche mit Ciliaten und rhabdocoelen Turbellarien , 2004, Zeitschrift für vergleichende Physiologie.

[56]  D. Ojcius,et al.  The oral microbiota: living with a permanent guest. , 2009, DNA and cell biology.

[57]  H. Westerhoff,et al.  A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. , 2006, Antioxidants & redox signaling.

[58]  Hans V. Westerhoff,et al.  Emergence and Its Place in Nature: A Case Study of Biochemical Networks , 2005, Synthese.

[59]  Kevin B. Clark,et al.  Origins of learned reciprocity in solitary ciliates searching grouped 'courting' assurances at quantum efficiencies , 2010, Biosyst..

[60]  H. Westerhoff Signalling control strength. , 2008, Journal of theoretical biology.

[61]  A. Wouters,et al.  Design explanation: determining the constraints on what can be alive , 2007 .

[62]  W. R. Farmer,et al.  Improving lycopene production in Escherichia coli by engineering metabolic control , 2000, Nature Biotechnology.

[63]  Bahram Bahrami,et al.  Mucosal biofilm communities in the human intestinal tract. , 2011, Advances in applied microbiology.

[64]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex , 2010, Annals of Neurosciences.

[65]  R. Kümmerli,et al.  Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments , 2013, Proceedings of the Royal Society B: Biological Sciences.

[66]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  M. Khammash,et al.  Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. , 2002, Journal of theoretical biology.

[68]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[69]  J. Liao,et al.  A synthetic gene–metabolic oscillator , 2005, Nature.

[70]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[71]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[72]  Kevin B Clark,et al.  Arrhenius-kinetics evidence for quantum tunneling in microbial “social” decision rates , 2010, Communicative & integrative biology.

[73]  Maureen A. O’Malley Philosophy and the microbe: a balancing act , 2013 .

[74]  G. J. Velicer Social strife in the microbial world. , 2003, Trends in microbiology.

[75]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[76]  Linda M. Wills,et al.  Reverse Engineering , 1996, Springer US.

[77]  M. Federle,et al.  Autoinducer-2-based chemical communication in bacteria: complexities of interspecies signaling. , 2009, Contributions to microbiology.

[78]  Kevin B. Clark,et al.  Social biases determine spatiotemporal sparseness of ciliate mating heuristics , 2012, Communicative & integrative biology.

[79]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[80]  H. Berg,et al.  Transient response to chemotactic stimuli in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Hellingwerf,et al.  Autoamplification of a Two-Component Regulatory System Results in “Learning” Behavior , 2001, Journal of bacteriology.

[82]  Kostas Kampourakis The philosophy of biology : a companion for educators , 2013 .

[83]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[84]  L. Eberl,et al.  Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. , 2004, Microbiology.

[85]  F. Bruggeman,et al.  The multifarious short‐term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica , 2005, The FEBS journal.

[86]  Yonatan Loewenstein,et al.  Stochasticity, Bistability and the Wisdom of Crowds: A Model for Associative Learning in Genetic Regulatory Networks , 2013, PLoS Comput. Biol..

[87]  D. D. Jensen Experiments on learning in paramecia. , 1957, Science.

[88]  Jon Timmis,et al.  An immune network inspired evolutionary algorithm for the diagnosis of Parkinson's disease , 2008, Biosyst..

[89]  Andreas Wilke,et al.  Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1 , 2009, Proceedings of the National Academy of Sciences.

[90]  Barbara M. Bakker,et al.  Emergence of the silicon human and network targeting drugs. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[91]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[92]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[93]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[94]  Monika Wieliczko,et al.  [Calcium homeostasis]. , 2013, Wiadomosci lekarskie.

[95]  Dearborn Animal Intelligence: An Experimental Study of the Associative Processes in Animals , 1900 .

[96]  E. Rosenberg,et al.  Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. , 2008, FEMS microbiology reviews.

[97]  Achim Stephan,et al.  Varieties of Emergentism , 1999 .

[98]  J. Lengeler,et al.  Metabolic Networks: a Signal-Oriented Approach to Cellular Models , 2000, Biological chemistry.

[99]  M. Noirot-Gros,et al.  Protein interaction networks in bacteria. , 2004, Current opinion in microbiology.

[100]  H. Westerhoff,et al.  Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway , 2001, FEBS letters.

[101]  Frank J. Bruggeman,et al.  Mechanistic Explanations and Models in Molecular Systems Biology , 2013, Foundations of Science.

[102]  J. Marshall Quorum sensing , 2013, Proceedings of the National Academy of Sciences.

[103]  Erwin Frey,et al.  Stochastic switching to competence. , 2008, Current opinion in microbiology.

[104]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[105]  Dale Kaiser,et al.  Signaling in myxobacteria. , 2004, Annual review of microbiology.

[106]  Hugues Bersini,et al.  Toward a brain-like memory with recurrent neural networks , 2009 .

[107]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[108]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[109]  Klaas Krab,et al.  AmtB‐mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH 4 + / NH 3 , 2011, FEBS letters.

[110]  R. Sternberg,et al.  Intelligence: Knowns and unknowns. , 1996 .

[111]  Danielle S. Bassett,et al.  Learning, Memory, and the Role of Neural Network Architecture , 2011, PLoS Comput. Biol..

[112]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[113]  E. Greenberg,et al.  Bacterial quorum sensing, cooperativity, and anticipation of stationary-phase stress , 2012, Proceedings of the National Academy of Sciences.

[114]  A. Wouters Biology’s Functional Perspective: Roles, Advantages and Organization , 2013 .

[115]  Sigal Ben-Yehuda,et al.  Intercellular Nanotubes Mediate Bacterial Communication , 2011, Cell.

[116]  A. Wouters,et al.  Four notions of biological function , 2003 .

[117]  M. Duijn The biocognitive spectrum : biological cognition as variations on sensorimotor coordination , 2012 .

[118]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[119]  Evangelos Simeonidis,et al.  Computing life: Add logos to biology and bios to physics. , 2013, Progress in biophysics and molecular biology.

[120]  E. Flores,et al.  Compartmentalized function through cell differentiation in filamentous cyanobacteria , 2010, Nature Reviews Microbiology.

[121]  Arno Wouters Explanation without a cause , 1999 .

[122]  Vittorio Venturi,et al.  Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease , 2011, The ISME Journal.

[123]  A. Oudenaarden,et al.  A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation , 2009, Cell.

[124]  H V Westerhoff,et al.  UvA-DARE ( Digital Academic Repository ) Signal transduction in bacteria : phospho-neural network ( s ) in Escherichia coli ? , 2003 .

[125]  J. Clemente,et al.  Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice , 2013, Science.

[126]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[127]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[128]  T. Nakagaki,et al.  Attempts to retreat from a dead-ended long capillary by backward swimming in Paramecium , 2014, Front. Microbiol..

[129]  Katya O. Gorbunova Kinetic Model of Parallel Data Processing , 1999, PaCT.

[130]  K. Jarrell,et al.  The surprisingly diverse ways that prokaryotes move , 2008, Nature Reviews Microbiology.

[131]  Mindless mastery. , 2002, Nature.

[132]  Arul Jayaraman,et al.  Indole is an inter-species biofilm signal mediated by SdiA , 2007, BMC Microbiology.

[133]  Rudi Balling,et al.  Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence , 2012, Front. Physio..

[134]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[135]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[136]  G. Klug,et al.  A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes , 2013, RNA biology.

[137]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[138]  Hans V. Westerhoff,et al.  Optimization of stress response through the nuclear receptor-mediated cortisol signalling network , 2013, Nature Communications.

[139]  Grzegorz Wegrzyn,et al.  Genetic switches during bacteriophage lambda development. , 2005, Progress in nucleic acid research and molecular biology.

[140]  Maureen A. O’Malley,et al.  Size doesn’t matter: towards a more inclusive philosophy of biology , 2007 .

[141]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[142]  G. Hajishengallis Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? , 2009, Microbes and infection.

[143]  M. Yücel,et al.  Dopamine modulates neural networks involved in effort-based decision-making , 2009, Neuroscience & Biobehavioral Reviews.

[144]  Corey Nislow,et al.  Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast , 2011, PLoS genetics.

[145]  Achim Stephan,et al.  The dual role of ‘emergence’ in the philosophy of mind and in cognitive science , 2006, Synthese.

[146]  Y. Iwasa,et al.  Optimal choice between feedforward and feedback control in gene expression to cope with unpredictable danger. , 2003, Journal of theoretical biology.

[147]  B. Finlay,et al.  Quorum sensing in bacterial virulence. , 2010, Microbiology.

[148]  A. Jayaraman,et al.  The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation , 2009, Proceedings of the National Academy of Sciences.

[149]  D. Fell Understanding the Control of Metabolism , 1996 .

[150]  B. Gelber Investigations of the behavior of Paramecium aurelia. I. Modification of behavior after training with reinforcement. , 1952, Journal of comparative and physiological psychology.

[151]  Mario Bunge,et al.  Function and Functionalism: A Synthetic Perspective , 2001, Philosophy of Science.

[152]  F. Leganés,et al.  A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. , 2004, Microbiology.

[153]  M. Débarbouillé,et al.  Structural Basis for Feed-Forward Transcriptional Regulation of Membrane Lipid Homeostasis in Staphylococcus aureus , 2013, PLoS pathogens.

[154]  Barbara M. Bakker,et al.  Systems biology towards life in silico: mathematics of the control of living cells , 2009, Journal of mathematical biology.

[155]  Kevin B. Clark,et al.  Ciliates learn to diagnose and correct classical error syndromes in mating strategies , 2013, Front. Microbiol..

[156]  A. Ivens,et al.  Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei , 2013, Nature.

[157]  Kevin B Clark,et al.  On classical and quantum error-correction in ciliate mate selection , 2010, Communicative & integrative biology.

[158]  Ned S. Wingreen,et al.  Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation , 2007, PLoS Comput. Biol..

[159]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[160]  Anthony Trewavas,et al.  Plant intelligence: Mindless mastery , 2002, Nature.