2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors

[1]  J. Shimshoni,et al.  Pharmacokinetic and pharmacodynamic evaluation of 5‐methoxy‐2‐aminoindane (MEAI): A new binge‐mitigating agent , 2018, Toxicology and applied pharmacology.

[2]  M. Mameli,et al.  Positive regulation of raphe serotonin neurons by serotonin 2B receptors , 2018, Neuropsychopharmacology.

[3]  M. Huestis,et al.  Impact of Novel Psychoactive Substances on Clinical and Forensic Toxicology and Global Public Health. , 2017, Clinical chemistry.

[4]  M. Freissmuth,et al.  Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates , 2017, The Journal of Biological Chemistry.

[5]  S. Krähenbühl,et al.  Pharmacological profile of mephedrone analogs and related new psychoactive substances , 2017, Neuropharmacology.

[6]  A. Atkinson,et al.  Online test purchased new psychoactive substances in 5 different European countries: A snapshot study of chemical composition and price. , 2017, The International journal on drug policy.

[7]  R. Glennon,et al.  N-Alkylated Analogs of 4-Methylamphetamine (4-MA) Differentially Affect Monoamine Transporters and Abuse Liability , 2017, Neuropsychopharmacology.

[8]  D. Nutt,et al.  Toxicological evaluation of 5‐methoxy‐2‐aminoindane (MEAI): Binge mitigating agent in development , 2017, Toxicology and applied pharmacology.

[9]  A. Janowsky,et al.  Structure-Activity Relationships of Substituted Cathinones, with Transporter Binding, Uptake, and Release , 2017, The Journal of Pharmacology and Experimental Therapeutics.

[10]  M. Forster,et al.  Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents , 2016, Behavioural pharmacology.

[11]  Kurt R. Lehner,et al.  Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats , 2016, Psychopharmacology.

[12]  R. Freyberg,et al.  Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain , 2016, Nature Communications.

[13]  R. Glennon,et al.  Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats , 2016, European Neuropsychopharmacology.

[14]  N. Volkow,et al.  Abuse of New Psychoactive Substances: Threats and Solutions , 2016, Neuropsychopharmacology.

[15]  H. Sitte,et al.  Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters , 2016, Molecular Pharmacology.

[16]  T. Paunio,et al.  Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon , 2015, Translational Psychiatry.

[17]  R. Niesink,et al.  4-Fluoroamphetamine in the Netherlands: more than a one-night stand. , 2015, Addiction.

[18]  M. Slezak A not-so-bitter pill , 2015 .

[19]  H. Sitte,et al.  Amphetamines, new psychoactive drugs and the monoamine transporter cycle , 2014, Trends in pharmacological sciences.

[20]  S. Elliott,et al.  A 3-year review of new psychoactive substances in casework. , 2014, Forensic science international.

[21]  Michael Krauss,et al.  Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins , 2014, Science.

[22]  M. Liechti,et al.  Monoamine transporter and receptor interaction profiles of a new series of designer cathinones , 2014, Neuropharmacology.

[23]  M. Liechti,et al.  Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. , 2014, Biochemical pharmacology.

[24]  O. Corazza,et al.  MDAI (5,6‐methylenedioxy‐2‐aminoindane; 6,7‐dihydro‐5H‐cyclopenta[f][1,3]benzodioxol‐6‐amine; ‘sparkle’; ‘mindy’) toxicity: a brief overview and update , 2013, Human psychopharmacology.

[25]  Kurt R. Lehner,et al.  Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts’ Products , 2013, Neuropsychopharmacology.

[26]  S. Negus,et al.  Use of intracranial self‐stimulation to evaluate abuse‐related and abuse‐limiting effects of monoamine releasers in rats , 2013, British journal of pharmacology.

[27]  V. Setola,et al.  Neurochemical profiles of some novel psychoactive substances. , 2013, European journal of pharmacology.

[28]  H. Sitte,et al.  Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. , 2013, European journal of pharmacology.

[29]  M. Liechti,et al.  Pharmacological characterization of designer cathinones in vitro , 2013, British journal of pharmacology.

[30]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[31]  R. Rothman,et al.  The Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue , 2012, Neuropsychopharmacology.

[32]  S. Johansen,et al.  Isomers of fluoroamphetamines detected in forensic cases in Denmark , 2012, International Journal of Legal Medicine.

[33]  M. Liechti,et al.  The Norepinephrine Transporter Inhibitor Reboxetine Reduces Stimulant Effects of MDMA (“Ecstasy”) in Humans , 2011, Clinical pharmacology and therapeutics.

[34]  B. Blough,et al.  In Vivo Effects of Amphetamine Analogs Reveal Evidence for Serotonergic Inhibition of Mesolimbic Dopamine Transmission in the Rat , 2011, Journal of Pharmacology and Experimental Therapeutics.

[35]  R. Depoortère,et al.  The central serotonin2B receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity , 2010, Journal of neurochemistry.

[36]  I. Kirk,et al.  Determining the subjective effects of TFMPP in human males , 2010, Psychopharmacology.

[37]  T. Kosten,et al.  Atomoxetine Attenuates Dextroamphetamine Effects in Humans , 2009, The American journal of drug and alcohol abuse.

[38]  D. Hervé,et al.  Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice , 2009, PloS one.

[39]  Bryan L. Roth,et al.  Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment , 2009, Molecular Pharmacology.

[40]  S. Shepherd A not so bitter pill. , 2009, The Health service journal.

[41]  M. Forster,et al.  Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats , 2009, Psychopharmacology.

[42]  V. Setola,et al.  Serotonin 5-HT2B Receptors Are Required for 3,4-Methylenedioxymethamphetamine-Induced Hyperlocomotion and 5-HT Release In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[43]  J. Javitch,et al.  Currents in Response to Rapid Concentration Jumps of Amphetamine Uncover Novel Aspects of Human Dopamine Transporter Function , 2008, The Journal of Neuroscience.

[44]  R. de la Torre,et al.  Pharmacological Interaction between 3,4-Methylenedioxymethamphetamine (Ecstasy) and Paroxetine: Pharmacological Effects and Pharmacokinetics , 2007, Journal of Pharmacology and Experimental Therapeutics.

[45]  P. Franken,et al.  Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. , 2007, The American journal of cardiology.

[46]  F. Nagai,et al.  The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. , 2007, European journal of pharmacology.

[47]  B. Roth Drugs and valvular heart disease. , 2007, The New England journal of medicine.

[48]  R. C. Pierce,et al.  The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? , 2006, Neuroscience & Biobehavioral Reviews.

[49]  M. Tancer,et al.  The effects of fluoxetine on the subjective and physiological effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans , 2006, Psychopharmacology.

[50]  Allison G. Dempsey,et al.  Interaction of Amphetamines and Related Compounds at the Vesicular Monoamine Transporter , 2006, Journal of Pharmacology and Experimental Therapeutics.

[51]  R. Rothman,et al.  Therapeutic potential of monoamine transporter substrates. , 2006, Current topics in medicinal chemistry.

[52]  R. Rothman,et al.  Balance between Dopamine and Serotonin Release Modulates Behavioral Effects of Amphetamine‐Type Drugs , 2006, Annals of the New York Academy of Sciences.

[53]  K G Anderson,et al.  Relationship between the Serotonergic Activity and Reinforcing Effects of a Series of Amphetamine Analogs , 2005, Journal of Pharmacology and Experimental Therapeutics.

[54]  D. Sulzer,et al.  Mechanisms of neurotransmitter release by amphetamines: A review , 2005, Progress in Neurobiology.

[55]  B. Blough,et al.  N-Substituted Piperazines Abused by Humans Mimic the Molecular Mechanism of 3,4-Methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’) , 2005, Neuropsychopharmacology.

[56]  G. Uhl,et al.  The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. , 2004, Pharmacogenetics.

[57]  V. Setola,et al.  3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. , 2003, Molecular pharmacology.

[58]  Michael H. Baumann,et al.  (+)-Fenfluramine and Its Major Metabolite, (+)-Norfenfluramine, Are Potent Substrates for Norepinephrine Transporters , 2003, Journal of Pharmacology and Experimental Therapeutics.

[59]  M. Humbert,et al.  Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension , 2002, Nature Medicine.

[60]  B. Roth,et al.  Evidence for Possible Involvement of 5-HT2B Receptors in the Cardiac Valvulopathy Associated With Fenfluramine and Other Serotonergic Medications , 2000, Circulation.

[61]  H. Palevsky,et al.  Recreational use of aminorex and pulmonary hypertension. , 2000, Chest.

[62]  F. Vollenweider,et al.  Acute Psychological Effects of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) are Attenuated by the Serotonin Uptake Inhibitor Citalopram , 1999, Neuropsychopharmacology.

[63]  R. Rothman,et al.  Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. , 1999, Circulation.

[64]  D. Marona-Lewicka,et al.  Drug discrimination studies of the interoceptive cues produced by selective serotonin uptake inhibitors and selective serotonin releasing agents , 1998, Psychopharmacology.

[65]  E. Pothos,et al.  Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action , 1997, Neuron.

[66]  R. Wise,et al.  The neurobiology of addiction , 2019, Annals of the New York Academy of Sciences.

[67]  D. Marona-Lewicka,et al.  Reinforcing effects of certain serotonin-releasing amphetamine derivatives , 1996, Pharmacology Biochemistry and Behavior.

[68]  D. Sulzer,et al.  Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  D. Marona-Lewicka,et al.  Behavioral effects of the highly selective serotonin releasing agent 5-methoxy-6-methyl-2-aminoindan. , 1994, European journal of pharmacology.

[70]  G. Rudnick,et al.  From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. , 1993, Biochimica et biophysica acta.

[71]  M. P. Johnson,et al.  [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. , 1991, European journal of pharmacology.

[72]  M W Fischman,et al.  Assessment of abuse liability of stimulant drugs in humans: a methodological survey. , 1991, Drug and alcohol dependence.

[73]  M. P. Johnson,et al.  Synthesis and pharmacological examination of 1-(3-methoxy-4-methylphenyl)-2-aminopropane and 5-methoxy-6-methyl-2-aminoindan: similarities to 3,4-(methylenedioxy)methamphetamine (MDMA). , 1991, Journal of medicinal chemistry.

[74]  R. Oberlender,et al.  Structural variation and (+)-amphetamine-like discriminative stimulus properties , 1991, Pharmacology Biochemistry and Behavior.

[75]  L. D. Reid,et al.  Methylenedioxymethamphetamine's capacity to establish place preferences and modify intake of an alcoholic beverage , 1990, Pharmacology Biochemistry and Behavior.

[76]  R. Oberlender,et al.  (+)-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxy-methamphetamine-like behavioral activity. , 1990, The Journal of pharmacology and experimental therapeutics.

[77]  R. M. Riggs,et al.  Nonneurotoxic tetralin and indan analogues of 3,4-(methylenedioxy)amphetamine (MDA). , 1990, Journal of medicinal chemistry.

[78]  E. D. De Souza,et al.  Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. , 1988, European journal of pharmacology.

[79]  M. D. Schechter Discriminative profile of MDMA , 1986, Pharmacology Biochemistry and Behavior.

[80]  R. Glennon,et al.  Structure-activity studies on amphetamine analogs using drug discrimination methodology , 1984, Pharmacology Biochemistry and Behavior.

[81]  J. Nutt,et al.  A comparison of fenfluramine and amphetamine in man , 1975, Clinical pharmacology and therapeutics.

[82]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[83]  A. Halberstadt Pharmacology and Toxicology of N-Benzylphenethylamine ("NBOMe") Hallucinogens. , 2017, Current topics in behavioral neurosciences.

[84]  R. Braithwaite,et al.  Chapter 11 – Aminoindane Analogues , 2013 .

[85]  K. Rice,et al.  Amphetamine‐type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin , 2001, Synapse.

[86]  B. Largent,et al.  Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. , 2000, Molecular pharmacology.

[87]  L. Pallanck,et al.  Mechanisms of neurotransmitter release. , 1999, International review of neurobiology.

[88]  Glennon Ra Stimulus properties of hallucinogenic phenalkylamines and related designer drugs: formulation of structure-activity relationships. , 1989 .

[89]  R. Glennon Stimulus properties of hallucinogenic phenalkylamines and related designer drugs: formulation of structure-activity relationships. , 1989, NIDA research monograph.

[90]  V. P. Whittaker,et al.  The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. , 1962, Journal of anatomy.

[91]  Hans-Peter Benedikt VII. Das β‐Hydrindon und einige seiner Derivate , 1893 .