Monolithic catalysts with high thermal conductivity for the Fischer–Tropsch synthesis in tubular reactors

Abstract The adoption of multitubular reactors loaded with washcoated structured catalysts having highly conductive honeycomb supports has been proposed as an alternative to conventional packed-bed reactors in order to approach the ideal plug-flow behaviour while (i) enabling isothermal operation of highly endo- and exo-thermic reactions, (ii) facilitating the intraparticle mass-transfer, and (iii) limiting pressure drop. The potential of such reactors in the low temperature Fischer–Tropsch synthesis is investigated herein by means of a pseudo-continuous, heterogeneous, two-dimensional mathematical model of a single reactor tube. Simulation results indicate that extruded aluminum honeycomb monoliths, washcoated with a Co/Al 2 O 3 catalyst, are promising for the application at the industrial scale, in particular when adopting supports with high cell densities and catalysts with high activity. Limited temperature gradients are in fact possible even at extreme process conditions, thus leading to interesting volumetric reactor yields with negligible pressure drop. This result is achieved without the need of cofeeding to the reactor large amounts of liquid hydrocarbons to remove the reaction heat, as opposite to existing industrial Fischer–Tropsch packed-bed reactors.

[1]  Anders Holmen,et al.  Fischer-tropsch synthesis on monolithic catalysts of different materials , 2001 .

[2]  James A. Miller,et al.  The Chemkin Thermodynamic Data Base , 1990 .

[3]  Achim Karl-Erich Heibel,et al.  Heat transfer in conductive monolith structures , 2005 .

[4]  B. Jager,et al.  Low temperature Fischer–Tropsch synthesis from a Sasol perspective , 1999 .

[5]  Robert Güttel,et al.  Fischer–Tropsch synthesis in milli-structured fixed-bed reactors: Experimental study and scale-up considerations , 2010 .

[6]  J. Moulijn,et al.  Modelling of heat transfer in metallic monoliths consisting of sinusoidal cells , 1994 .

[7]  K. E. Starling,et al.  Generalized multiparameter correlation for nonpolar and polar fluid transport properties , 1988 .

[8]  Freek Kapteijn,et al.  Fischer–Tropsch synthesis using monolithic catalysts , 2005 .

[9]  M. Centeno,et al.  Fischer-tropsch catalyst deposition on metallic structured supports , 2007 .

[10]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[11]  F. Kapteijn,et al.  Using monolithic catalysts for highly selective Fischer–Tropsch synthesis , 2003 .

[12]  Freek Kapteijn,et al.  Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors , 2003 .

[13]  G. Groppi,et al.  'High conductivity' monolith catalysts for gas/solid exothermic reactions , 2002 .

[14]  M. Bradford,et al.  Monolith loop catalytic membrane reactor for Fischer–Tropsch synthesis , 2005 .

[15]  Enrico Tronconi,et al.  Design of novel monolith catalyst supports for gas/solid reactions with heat exchange , 2000 .

[16]  C. H. Bartholomew,et al.  Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt , 1984 .

[17]  Jianli Hu,et al.  Intensified Fischer–Tropsch synthesis process with microchannel catalytic reactors , 2009 .

[18]  Study of Radial Heat Transfer in a Tubular Fischer−Tropsch Synthesis Reactor , 2010 .

[19]  Jacob A. Moulijn,et al.  Monoliths in Heterogeneous Catalysis , 1994 .

[20]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[21]  R. Shah Laminar Flow Forced convection in ducts , 1978 .

[22]  Anders Holmen,et al.  Fischer–Tropsch synthesis on monolithic catalysts with oil circulation , 2005 .

[23]  G. Groppi,et al.  Honeycomb supports with high thermal conductivity for gas/solid chemical processes , 2005 .

[24]  R. Zennaro,et al.  Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts , 2007 .

[25]  M. Dry High quality diesel via the Fischer–Tropsch process – a review , 2002 .

[26]  Mario Montes,et al.  Fischer–Tropsch synthesis in microchannels , 2011 .

[27]  K. E. Starling,et al.  Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity , 1984 .

[28]  F. M. Meeuse,et al.  Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? , 2003 .

[29]  Enrico Tronconi,et al.  Continuous vs. discrete models of nonadiabatic monolith catalysts , 1996 .

[30]  R. Zennaro,et al.  Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt , 2000 .

[31]  Enrico Tronconi,et al.  A study on the thermal behavior of structured plate-type catalysts with metallic supports for gas/solid exothermic reactions , 2000 .

[32]  S. T. Sie,et al.  Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS) , 1991 .

[33]  M. Kassing,et al.  Preparation and Catalytic Evaluation of Cobalt-Based Monolithic and Powder Catalysts for Fischer−Tropsch Synthesis , 2008 .

[34]  Yong Wang,et al.  Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor , 2005 .

[35]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[36]  B. Finlayson Nonlinear analysis in chemical engineering , 1980 .

[37]  Thomas Turek,et al.  Comparison of different reactor types for low temperature Fischer–Tropsch synthesis: A simulation study , 2009 .

[38]  J. Giddings,et al.  Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections , 1969 .

[39]  Rajamani Krishna,et al.  Design and scale-up of the Fischer–Tropsch bubble column slurry reactor , 2000 .

[40]  R. Zennaro,et al.  An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports , 2009 .

[41]  Enrico Tronconi,et al.  Simulation of structured catalytic reactors with enhanced thermal conductivity for selective oxidation reactions , 2001 .

[42]  Heon Jung,et al.  Mass- and heat-transfer-enhanced catalyst system for Fischer-Tropsch synthesis in fixed-bed reactors , 2008 .

[43]  Pio Forzatti,et al.  A comparison of lumped and distributed models of monolith catalytic combustors , 1995 .

[44]  J. Nijenhuis,et al.  Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis , 2009 .

[45]  Cuong Pham-Huu,et al.  Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed , 2009 .

[46]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[47]  S. T. Sie,et al.  Diffusion limitations in fischer‐tropsch catalysts , 1989 .

[48]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: Overview of reactor development and future potentialities , 2005 .

[49]  P. Pfeifer,et al.  Fischer–Tropsch synthesis in a microstructured reactor , 2009 .

[50]  Y. Jaluria,et al.  An Introduction to Heat Transfer , 1950 .

[51]  Achim Karl-Erich Heibel,et al.  Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties , 2004 .

[52]  M. Twigg,et al.  Theory and applications of ceramic foam catalysts , 2002 .