Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids

Abstract A cornerstone of numerical homogenization is the equivalence of the microscopic and the macroscopic energy densities, which is referred to as Hill–Mandel condition. Among these coupling conditions, the cases of periodic, linear displacement and constant traction conditions are most prominent in engineering applications. While the stiffness hierarchy of these coupling conditions is a theoretically established and numerically verified result, very little is known about the numerical errors and convergence properties for each of them in various norms. The present work addresses these aspects both on the macroscale and the microscale for linear as well as quadratic finite element shape functions. The analysis addresses aspects of (i) regularity and how its loss affects the convergence behavior on both scales compared with the a priori estimates, of (ii) error propagation from micro to macro and of (iii) optimal micro–macro mesh refinement strategy. For constant traction conditions two different approaches are compared. The performance of a recovery-type error estimation based on superconvergence is assessed. All results of the present work are valid for both the Finite Element Heterogeneous Multiscale Method FE-HMM and for FE 2 .

[1]  C. Miehe,et al.  Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy , 2003 .

[2]  Assyr Abdulle,et al.  A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .

[3]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[4]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[5]  Marc G. D. Geers,et al.  Transient computational homogenization for heterogeneous materials under dynamic excitation , 2013 .

[6]  Andreas Rössle,et al.  Corner Singularities and Regularity of Weak Solutions for the Two-Dimensional Lamé Equations on Domains with Angular Corners , 2000 .

[7]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[8]  P. Donato,et al.  An introduction to homogenization , 2000 .

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[11]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[12]  J. Schröder,et al.  Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .

[13]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[14]  Assyr Abdulle,et al.  Numerical Experiments for Multiscale Problems in Linear Elasticity , 2015, ENUMATH.

[15]  Raúl A. Feijóo,et al.  On micro‐to‐macro transitions for multi‐scale analysis of non‐linear heterogeneous materials: unified variational basis and finite element implementation , 2011 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  V. Kouznetsova,et al.  A general multiscale framework for the emergent effective elastodynamics of metamaterials , 2018 .

[18]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[19]  Bernhard Eidel,et al.  The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method , 2017, 1701.08313.

[20]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[21]  J. Banavar,et al.  The Heterogeneous Multi-Scale Method , 1992 .

[22]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[23]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[24]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[26]  E Weinan,et al.  The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size , 2007, J. Comput. Phys..

[27]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[28]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[29]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[30]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[31]  J. Schröder A numerical two-scale homogenization scheme: the FE 2 -method , 2014 .

[32]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[33]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[34]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[35]  Jan Zeman,et al.  Wang tiling aided statistical determination of the Representative Volume Element size of random heterogeneous materials , 2017, European Journal of Mechanics - A/Solids.

[36]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[37]  Bhushan Lal Karihaloo,et al.  Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress , 2005 .

[38]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[39]  Bernhard Eidel,et al.  The heterogeneous multiscale finite element method FE‐HMM for the homogenization of linear elastic solids , 2016 .

[40]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[41]  Jacob Fish,et al.  Computational damage mechanics for composite materials based on mathematical homogenization , 1999 .

[42]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[43]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[44]  Paul Steinmann,et al.  Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound , 2016 .

[45]  Carlos A. Felippa,et al.  The construction of free–free flexibility matrices for multilevel structural analysis , 2002 .

[46]  Fredrik Larsson,et al.  Computational homogenization based on a weak format of micro-periodicity for RVE-problems , 2011 .

[47]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[48]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[49]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[50]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[51]  P. Steinmann,et al.  Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions , 2016, Computational Mechanics.

[52]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .