Generalized-Ensemble Algorithms for the Isobaric–Isothermal Ensemble

We present generalized-ensemble algorithms for isobaric–isothermal molecular simulations. In addition to the multibaric–multithermal algorithm and replica-exchange method for the isobaric–isothermal ensemble, which have already been proposed, we propose a simulated tempering method for this ensemble. We performed molecular dynamics simulations with these algorithms for an alanine dipeptide system in explicit water molecules to test the effectiveness of the algorithms. We found that these generalized-ensemble algorithms are all useful for conformational sampling of biomolecular systems in the isobaric–isothermal ensemble.

[1]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[2]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[3]  I. R. Mcdonald,et al.  NpT-ensemble Monte Carlo calculations for binary liquid mixtures , 2002 .

[4]  W. Marsden I and J , 2012 .

[5]  A. Garcia,et al.  Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study. , 2004, Physical review letters.

[6]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[9]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[10]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[11]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[12]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[13]  Y. Okamoto,et al.  Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble , 1996, physics/9710018.

[14]  Y. Okamoto Institute for Molecular Science,et al.  Replica-exchange simulated tempering method for simulations of frustrated systems , 2000 .

[15]  Ayori Mitsutake,et al.  Simulated-tempering replica-exchange method for the multidimensional version. , 2009, The Journal of chemical physics.

[16]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[17]  Yuko Okamoto,et al.  Molecular dynamics simulations in the multibaric–multithermal ensemble , 2004 .

[18]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[19]  Yuko Okamoto,et al.  Replica-Exchange Molecular Dynamics Simulations for Various Constant Temperature Algorithms , 2010 .

[20]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[21]  Yuji Sugita,et al.  Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape , 2000, cond-mat/0009119.

[22]  A. Kidera,et al.  Multicanonical Ensemble Generated by Molecular Dynamics Simulation for Enhanced Conformational Sampling of Peptides , 1997 .

[23]  Yuko Okamoto,et al.  Replica-Exchange Monte Carlo Method for Ar Fluid , 2000 .

[24]  Yuko Okamoto,et al.  Multibaric–multithermal ensemble molecular dynamics simulations , 2006, J. Comput. Chem..

[25]  Yuko Okamoto,et al.  Replica-exchange Monte Carlo method for the isobaric isothermal ensemble , 2001 .

[26]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[27]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[28]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[29]  H. Okumura,et al.  Monte Carlo simulations in multibaric–multithermal ensemble , 2004 .

[30]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[31]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[32]  Yuko Okamoto,et al.  Monte Carlo simulations in generalized isobaric-isothermal ensembles. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[34]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[35]  Yuko Okamoto,et al.  From multidimensional replica-exchange method to multidimensional multicanonical algorithm and simulated tempering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[37]  Yuko Okamoto,et al.  Multidimensional generalized-ensemble algorithms for complex systems. , 2009, The Journal of chemical physics.

[38]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[39]  J. Ponder,et al.  An efficient newton‐like method for molecular mechanics energy minimization of large molecules , 1987 .

[40]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[41]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[42]  Yuko Okamoto,et al.  Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations. , 2008, The journal of physical chemistry. B.