Large-scale multiple hypothesis testing in information retrieval: Towards a new approach to document ranking
暂无分享,去创建一个
[1] Tao Tao,et al. Language Model Information Retrieval with Document Expansion , 2006, NAACL.
[2] R. Tibshirani,et al. Empirical bayes methods and false discovery rates for microarrays , 2002, Genetic epidemiology.
[3] Jean-Jacques Daudin,et al. Determination of the differentially expressed genes in microarray experiments using local FDR , 2004, BMC Bioinformatics.
[4] Weichung Joe Shih,et al. A mixture model for estimating the local false discovery rate in DNA microarray analysis , 2004, Bioinform..
[5] S. Dudoit,et al. Multiple Hypothesis Testing in Microarray Experiments , 2003 .
[6] John D. Storey. A direct approach to false discovery rates , 2002 .
[7] Stan Pounds,et al. Estimating the Occurrence of False Positives and False Negatives in Microarray Studies by Approximating and Partitioning the Empirical Distribution of P-values , 2003, Bioinform..
[8] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[9] Christina Kendziorski,et al. On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data , 2001, J. Comput. Biol..
[10] Gerard Salton,et al. A vector space model for automatic indexing , 1975, CACM.
[11] CHENGXIANG ZHAI,et al. A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.
[12] David B. Allison,et al. A mixture model approach for the analysis of microarray gene expression data , 2002 .