Merkel cell number and distribution, and CD200 expression in patients with lichen planopilaris and discoid lupus erythematosus

Immune mechanisms are considered to be responsible for the pathogenesis of cicatricial alopecia in lichen planopilaris (LPP) and discoid lupus erythematosus (DLE) diseases. CD200 has an immunomodulatory function in hair follicles. The functions of Merkel cells (MCs) in hair follicles remain to be fully understood.

[1]  I. Rosman,et al.  Frontal fibrosing alopecia demographics: a survey of 29 patients. , 2019, Cutis.

[2]  M. Westerhoff,et al.  CD200 Expression in Neuroendocrine Neoplasms , 2017, American journal of clinical pathology.

[3]  A. Katoulis,et al.  Frontal Fibrosing Alopecia and Vitiligo: Coexistence or True Association , 2016, Skin Appendage Disorders.

[4]  A. Kolivras,et al.  Loss of cytokeratin-15 (CK15) expression is not specific for lichen planopilaris (LPP). , 2016, Journal of American Academy of Dermatology.

[5]  G. Jacobsen,et al.  Comorbid autoimmune diseases in patients with vitiligo: A cross-sectional study. , 2016, Journal of the American Academy of Dermatology.

[6]  Nisha Desai,et al.  Absence of catagen/telogen phase and loss of cytokeratin 15 expression in hair follicles in lichen planopilaris. , 2014, Journal of the American Academy of Dermatology.

[7]  Ying Xiao,et al.  Merkel cells and touch domes: more than mechanosensory functions? , 2014, Experimental dermatology.

[8]  R. Paus,et al.  Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche , 2013, The Journal of pathology.

[9]  V. Garg,et al.  Coexistence of lip-tip vitiligo and disseminated discoid lupus erythematosus with hypothyroidism: Need for careful therapeutic approach , 2013, Indian dermatology online journal.

[10]  F. Rongioletti,et al.  Cicatricial (Scarring) Alopecias , 2012, American Journal of Clinical Dermatology.

[11]  M. Ohyama,et al.  Involvement of the bulge region with decreased expression of hair follicle stem cell markers in senile female cases of alopecia areata , 2011, Journal of the European Academy of Dermatology and Venereology : JEADV.

[12]  R. Paus,et al.  Can the hair follicle become a model for studying selected aspects of human ocular immune privilege? , 2011, Investigative ophthalmology & visual science.

[13]  Seung-Hyun Woo,et al.  Identification of epidermal progenitors for the Merkel cell lineage , 2010, Development.

[14]  R. Paus,et al.  Does collapse of immune privilege in the hair‐follicle bulge play a role in the pathogenesis of primary cicatricial alopecia? , 2009, Clincal and Experimental Dermatology.

[15]  E. Ingham,et al.  Expression of hair follicle stem cells detected by cytokeratin 15 stain: implications for pathogenesis of the scarring process in cutaneous lupus erythematosus , 2009, The British journal of dermatology.

[16]  Gwo-Shing Chen,et al.  Melanocytes : A possible autoimmune target in alopecia areata , 2009 .

[17]  R. Paus,et al.  Evidence that the bulge region is a site of relative immune privilege in human hair follicles , 2008, The British journal of dermatology.

[18]  K. McElwee Etiology of cicatricial alopecias: a basic science point of view , 2008, Dermatologic therapy.

[19]  G. Brand,et al.  Current considerations about Merkel cells. , 2007, European journal of cell biology.

[20]  M. Rosenblum,et al.  CD200, a "no danger" signal for hair follicles. , 2006, Journal of dermatological science.

[21]  H. Kamino,et al.  Possible role of the bulge region in the pathogenesis of inflammatory scarring alopecia: lichen planopilaris as the prototype , 2005, Journal of cutaneous pathology.

[22]  G. McFadden,et al.  Myxoma Virus M141R Expresses a Viral CD200 (vOX-2) That Is Responsible for Down-Regulation of Macrophage and T-Cell Activation In Vivo , 2005, Journal of Virology.

[23]  J. Phillips,et al.  The CD200 Receptor Is a Novel and Potent Regulator of Murine and Human Mast Cell Function1 , 2005, The Journal of Immunology.

[24]  R. Paus,et al.  A 'hairy' privilege. , 2005, Trends in immunology.

[25]  J. Phillips,et al.  Molecular Mechanisms of CD200 Inhibition of Mast Cell Activation , 2004, The Journal of Immunology.

[26]  G. Cotsarelis,et al.  Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. , 2004, Differentiation; research in biological diversity.

[27]  M. Rosenblum,et al.  Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance? , 2004, The Journal of investigative dermatology.

[28]  L. Adorini Faculty Opinions recommendation of Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. , 2004 .

[29]  Gordon Sandford,et al.  CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance. , 2004, Blood.

[30]  U. Wollina,et al.  Immunohistochemical demonstration of cytokeratin 19-positive basal cells in psoriatic plaques , 2004, Archives of Dermatological Research.

[31]  Y. Narisawa,et al.  Spatial relationship between Merkel cells and Langerhans cells in human hair follicles. , 2002, Journal of dermatological science.

[32]  Yann Barrandon,et al.  Morphogenesis and Renewal of Hair Follicles from Adult Multipotent Stem Cells , 2001, Cell.

[33]  B. Blom,et al.  Down-regulation of the macrophage lineage through interaction with OX2 (CD200). , 2000, Science.

[34]  W. Hartschuh,et al.  Merkel cells are absent in basal cell carcinomas but frequently found in trichoblastomas. An immunohistochemical study , 1997, Journal of cutaneous pathology.

[35]  W. Hartschuh,et al.  Merkel Cells in Nevus Sebaceus: An Immunohistochemical Study , 1995, The American Journal of dermatopathology.

[36]  D. K. Kim,et al.  The appearance, density, and distribution of Merkel cells in human embryonic and fetal skin: their relation to sweat gland and hair follicle development. , 1995, The Journal of investigative dermatology.

[37]  C. Filippi,et al.  Merkel cell hyperplasia in circumscribed neurodermatitis: a quantitative study , 1995 .

[38]  G. Nahass,et al.  Merkel cells in neurofibromas and neurilemomas , 1994, The British journal of dermatology.

[39]  G. Nahass,et al.  Merkel cells and prurigo nodularis. , 1994, Journal of the American Academy of Dermatology.

[40]  Y. Narisawa,et al.  Merkel cells of the terminal hair follicle of the adult human scalp. , 1994, The Journal of investigative dermatology.

[41]  S. K. Bose Absence of Merkel cells in lesional skin of vitiligo [corrected]. , 1994, International journal of dermatology.

[42]  M. Harkey,et al.  Anatomy and physiology of hair. , 1993, Forensic science international.

[43]  J. Ortonne,et al.  Anatomical mapping of Merkel cells in normal human adult epidermis , 1991, The British journal of dermatology.

[44]  R. Moll,et al.  Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias, and neoplasms. , 1985, Laboratory investigation; a journal of technical methods and pathology.

[45]  E. Bauer,et al.  Merkel cells in the outer follicular sheath. , 1982, Ultrastructural pathology.

[46]  F. Merkel Tastzellen und Tastkörperchen bei den Hausthieren und beim Menschen , 1875 .