Monotone Temporal Planning: Tractability, Extensions and Applications

This paper describes a polynomially-solvable class of temporal planning problems. Polynomiality follows from two assumptions. Firstly, by supposing that each sub-goal fluent can be established by at most one action, we can quickly determine which actions are necessary in any plan. Secondly, the monotonicity of sub-goal fluents allows us to express planning as an instance of STP ≠ (Simple Temporal Problem with difference constraints). This class includes temporally-expressive problems requiring the concurrent execution of actions, with potential applications in the chemical, pharmaceutical and construction industries. We also show that any (temporal) planning problem has a monotone relaxation which can lead to the polynomial-time detection of its unsolvability in certain cases. Indeed we show that our relaxation is orthogonal to relaxations based on the ignore-deletes approach used in classical planning since it preserves deletes and can also exploit temporal information.

[1]  Anders Jonsson The Role of Macros in Tractable Planning over Causal Graphs , 2007, IJCAI.

[2]  Anders Jonsson,et al.  The Complexity of Planning Problems With Simple Causal Graphs , 2008, J. Artif. Intell. Res..

[3]  Hector Geffner,et al.  Solving Simple Planning Problems with More Inference and No Search , 2005, CP.

[4]  Malte Helmert,et al.  Planning with h + in Theory and Practice , 2009, KI.

[5]  Nigel Shadbolt,et al.  A Specification Tool for Planning Systems , 1990, ECAI.

[6]  Stephen Cresswell,et al.  Extending landmarks analysis to reason about resources and repetition , 2002 .

[7]  Subbarao Kambhampati,et al.  When is Temporal Planning Really Temporal? , 2007, IJCAI.

[8]  Ji-Ae Shin,et al.  Continuous Time in a SAT-Based Planner , 2004, AAAI.

[9]  Hector Geffner,et al.  Unifying the Causal Graph and Additive Heuristics , 2008, ICAPS.

[10]  V. S. Subrahmanian,et al.  Complexity, Decidability and Undecidability Results for Domain-Independent Planning , 1995, Artif. Intell..

[11]  Silvia Richter,et al.  The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks , 2010, J. Artif. Intell. Res..

[12]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[13]  Christer Bäckström,et al.  Incremental planning , 1996 .

[14]  Martin C. Cooper,et al.  Relaxation of Temporal Planning Problems , 2013, 2013 20th International Symposium on Temporal Representation and Reasoning.

[15]  John K. Slaney,et al.  Blocks World revisited , 2001, Artif. Intell..

[16]  Manolis Koubarakis,et al.  Backtracking algorithms for disjunctions of temporal constraints , 1998, Artif. Intell..

[17]  Jörg Hoffmann,et al.  Enhancing the Context-Enhanced Additive Heuristic with Precedence Constraints , 2009, ICAPS.

[18]  Patrik Haslum,et al.  Semi-Relaxed Plan Heuristics , 2012, ICAPS.

[19]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[20]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[21]  R. Givan,et al.  Landmark Extraction via Planning Graph Propagation , 2003 .

[22]  Laura Sebastia,et al.  Detection of unsolvable temporal planning problems through the use of landmarks , 2008, ECAI.

[23]  Laura Sebastia,et al.  Decomposition of planning problems , 2006, AI Commun..

[24]  Patrik Haslum A New Approach to Tractable Planning , 2008, ICAPS.

[25]  Alfonso Gerevini,et al.  On Finding a Solution in Temporal Constraint Satisfaction Problems , 1997, IJCAI.

[26]  Cédric Pralet,et al.  Time-dependent Simple Temporal Networks: Properties and Algorithms , 2012, RAIRO Oper. Res..

[27]  Martin C. Cooper,et al.  Solving Temporally-Cyclic Planning Problems , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[28]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[29]  Blai Bonet,et al.  A Robust and Fast Action Selection Mechanism for Planning , 1997, AAAI/IAAI.

[30]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[31]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[32]  Craig A. Knoblock Automatically Generating Abstractions for Planning , 1994, Artif. Intell..

[33]  Martin C. Cooper,et al.  MANAGING TEMPORAL CYCLES IN PLANNING PROBLEMS REQUIRING CONCURRENCY , 2013, Comput. Intell..

[34]  Laura Sebastia,et al.  On the extraction, ordering, and usage of landmarks in planning , 2001 .

[35]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[36]  Robert Mattmüller,et al.  Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning , 2009, ICAPS.

[37]  Steven A. Vere,et al.  Planning in Time: Windows and Durations for Activities and Goals , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[39]  Hubie Chen,et al.  Causal graphs and structurally restricted planning , 2010, J. Comput. Syst. Sci..

[40]  Martin C. Cooper,et al.  Tractable Monotone Temporal Planning , 2012, ICAPS.

[41]  Jorge A. Baier,et al.  Improving Planning Performance Using Low-Conflict Relaxed Plans , 2009, ICAPS.

[42]  Carmel Domshlak,et al.  Multi-agent off-line coordination: Structure and complexity , 2001 .

[43]  Malte Helmert,et al.  A Planning Heuristic Based on Causal Graph Analysis , 2004, ICAPS.

[44]  Christer Bäckström,et al.  Parallel Non-Binary Planning in Polynomial Time , 1991, IJCAI.

[45]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[46]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[47]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[48]  Maria Fox,et al.  STAN4: A Hybrid Planning Strategy Based on Subproblem Abstraction , 2001, AI Mag..

[49]  Martin C. Cooper,et al.  A weighted CSP approach to cost-optimal planning , 2009, AI Commun..

[50]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[51]  Vincent Vidal,et al.  Problem Splitting Using Heuristic Search in Landmark Orderings , 2013, IJCAI.

[52]  Carmel Domshlak,et al.  Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? , 2009, ICAPS.

[53]  Éric Rutten,et al.  Temporal Planner = Nonlinear Planner + Time Map Manager , 1993, AI Commun..

[54]  Malik Ghallab,et al.  Planning with Sharable Resource Constraints , 1995, IJCAI.

[55]  Andrew Coles,et al.  Planning with Problems Requiring Temporal Coordination , 2008, AAAI.

[56]  Frederic Maris,et al.  TLP-GP: Solving Temporally-Expressive Planning Problems , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[57]  Jussi Rintanen,et al.  Complexity of Concurrent Temporal Planning , 2007, ICAPS.

[58]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[59]  Ronen I. Brafman,et al.  Factored Planning: How, When, and When Not , 2006, AAAI.

[60]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[61]  Malte Helmert,et al.  Sound and Complete Landmarks for And/Or Graphs , 2010, ECAI.

[62]  Anders Jonsson,et al.  The influence of k-dependence on the complexity of planning , 2012, Artif. Intell..

[63]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[64]  Subbarao Kambhampati,et al.  Sapa: A Multi-objective Metric Temporal Planner , 2003, J. Artif. Intell. Res..

[65]  Anders Jonsson The Role of Macros in Tractable Planning , 2009, J. Artif. Intell. Res..

[66]  Jörg Hoffmann,et al.  On Reasonable and Forced Goal Orderings and their Use in an Agenda-Driven Planning Algorithm , 2000, J. Artif. Intell. Res..

[67]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[68]  Malte Helmert,et al.  New Complexity Results for Classical Planning Benchmarks , 2006, ICAPS.

[69]  Carmel Domshlak,et al.  Who Said We Need to Relax All Variables? , 2013, ICAPS.

[70]  M. Pollack,et al.  Planning with Disjunctive Temporal Constraints , 2004 .

[71]  Carmel Domshlak,et al.  Red-Black Relaxed Plan Heuristics , 2013, AAAI.

[72]  Maria Fox,et al.  Exploiting a Graphplan Framework in Temporal Planning , 2003, ICAPS.

[73]  Hector Geffner,et al.  Heuristics for Planning with Action Costs Revisited , 2008, ECAI.

[74]  Maria Fox,et al.  An Investigation into the Expressive Power of PDDL2.1 , 2004, ECAI.

[75]  Christer Bäckström,et al.  Tractable Planning with State Variables by Exploiting Structural Restrictions , 1994, AAAI.

[76]  Malik Ghallab,et al.  Managing Efficiently Temporal Relations Through Indexed Spanning Trees , 1989, IJCAI.

[77]  Patrik Haslum Incremental Lower Bounds for Additive Cost Planning Problems , 2012, ICAPS.

[78]  Carmel Domshlak,et al.  New Islands of Tractability of Cost-Optimal Planning , 2008, J. Artif. Intell. Res..

[79]  Ronen I. Brafman,et al.  Strucutre and Complexitiy in Planning with Unary Operators , 2000, PuK.

[80]  David E. Smith The Case for Durative Actions: A Commentary on PDDL2.1 , 2003, J. Artif. Intell. Res..

[81]  Håkan L. S. Younes,et al.  VHPOP: Versatile Heuristic Partial Order Planner , 2003, J. Artif. Intell. Res..

[82]  Jj Org Hoomann Where Ignoring Delete Lists Works: Local Search Topology in Planning Benchmarks , 2003 .

[83]  Christer Bäckström,et al.  Planning in polynomial time: the SAS‐PUBS class , 1991, Comput. Intell..

[84]  Manolis Koubarakis,et al.  Dense Time and Temporal Constraints with != , 1992, KR.

[85]  Malte Helmert,et al.  Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..

[86]  Christer Bäckström,et al.  State-Variable Planning Under Structural Restrictions: Algorithms and Complexity , 1998, Artif. Intell..

[87]  David P. Miller,et al.  Hierarchical planning involving deadlines, travel time, and resources , 1988, Comput. Intell..