High-temperature modeling of AlGaN/GaN HEMTs

Wide bandgap, high saturation velocity, and high thermal stability are some of the properties of GaN, which make it an excellent material for high-power, high frequency, and high temperature applications. Given the predicted wide-spread use, reliable models are needed for simulationbased optimization. As several application areas require the devices to operate at elevated temperatures, a proper modeling of the temperature dependences of the band structure and transport parameters is highly important. We present two-dimensional hydrodynamic simulations of AlGaN/GaN high electron mobility transistors (HEMTs) supported by measured data at high temperatures.

[1]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[2]  Qixin Guo,et al.  Temperature Dependence of Band Gap Change in InN and AlN , 1994 .

[3]  Michael E. Levinshtein,et al.  Carrier mobility model for GaN , 2003 .

[4]  F. Schwierz,et al.  Influence of electron mobility modeling on DC I-V characteristics of WZ-GaN MESFET , 2001 .

[5]  Syed K. Islam,et al.  Temperature dependent analytical model for current-voltage characteristics of AlGaN/GaN power HEMT , 2009 .

[6]  B. Lenoir,et al.  Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition , 2002 .

[7]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[8]  J. Laskar,et al.  High temperature performances of AlGaN/GaN power HFETs , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[9]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[10]  S. Selberherr,et al.  A review of hydrodynamic and energy-transport models for semiconductor device simulation , 2003, Proc. IEEE.

[11]  Hong Wang,et al.  Temperature dependent microwave performance of AlGaN/GaN high-electron-mobility transistors on high-resistivity silicon substrate , 2007 .

[12]  Takashi Jimbo,et al.  High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates , 2002 .

[13]  R. Joshi Temperature-dependent electron mobility in GaN: Effects of space charge and interface roughness scattering , 1994 .

[14]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[15]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[16]  P. Han,et al.  Temperature dependence of the pyroelectric coefficient and the spontaneous polarization of AlN , 2007 .

[17]  S. Selberherr,et al.  IDENTIFICATION OF TRANSPORT PARAMETERS FOR GALLIUM NITRIDE BASED SEMICONDUCTOR DEVICES , 2006 .

[18]  Sébastien Chenot,et al.  High temperature behaviour of GaN HEMT devices on Si(111) and sapphire substrates , 2008 .

[19]  A. Trassoudaine,et al.  Growth of Gallium Nitride by Hydride Vapor Phase Epitaxy , 2006 .

[20]  T. Mizutani,et al.  High-frequency measurements of AlGaN/GaN HEMTs at high temperatures , 2001, IEEE Electron Device Letters.

[21]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[22]  M. Khan,et al.  Properties and ion implantation of AlxGa1−xN epitaxial single crystal films prepared by low pressure metalorganic chemical vapor deposition , 1983 .

[23]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[24]  K. Y. Tong,et al.  Numerical simulation of current–voltage characteristics of AlGaN/GaN HEMTs at high temperatures , 2005 .

[25]  Edward A. Preble,et al.  Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier , 2007 .

[26]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[27]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[28]  Syed K. Islam,et al.  AlGaN/GaN self-aligned MODFET with metal oxide gate for millimeter wave application , 2006, Microelectron. J..

[29]  Alexander A. Balandin,et al.  Temperature dependence of thermal conductivity of AlxGa1−xN thin films measured by the differential 3ω technique , 2004 .

[30]  C. T. Foxon,et al.  Isoelectronic doping of AlGaN alloys with As and estimates of AlGaN/GaN band offsets , 2003 .

[31]  Normally-Off AlGaN/GaN HEMTs with InGaN cap layer: A simulation study , 2008 .

[32]  S. Selberherr,et al.  Predictive Simulation of AlGaN/GaN HEMTs , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[33]  Giovanni Ghione,et al.  Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries , 2001 .

[34]  Joan M. Redwing,et al.  Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor , 1999 .

[35]  M. Khan,et al.  Schottky barrier properties of various metals on n-type GaN , 1996 .

[36]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[37]  John F. Muth,et al.  Thermal conductivity, dislocation density and GaN device design , 2006 .

[38]  S. Misawa,et al.  Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy , 1982 .

[39]  S. Keller,et al.  High-power AlGaN/GaN HEMTs for Ka-band applications , 2005, IEEE Electron Device Letters.

[40]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[41]  Masaaki Kuzuhara,et al.  High temperature electron transport properties in AlGaN/GaN heterostructures , 2010 .

[42]  R. Quay,et al.  Field-Plate Optimization of AlGaN/GaN HEMTs , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[43]  K. Y. Tong,et al.  A thermal model for static current characteristics of AlGaN∕GaN high electron mobility transistors including self-heating effect , 2006 .

[44]  C. H. Lee,et al.  High temperature power performance of AlGaN/GaN high-electron-mobility transistors on high-resistivity silicon , 2007 .

[45]  A.F.M. Anwar,et al.  AlGaN/GaN HEMTs: Experiment and Simulation of DC Characteristics , 2005, 2005 International Semiconductor Device Research Symposium.

[46]  Wayne R. McKinney,et al.  Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure , 1999 .

[47]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[48]  D. C. Reynolds,et al.  Defect Donor and Acceptor in GaN , 1997 .

[49]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[50]  J. Pankove,et al.  Thermal Conductivity of GaN, 25-360 K , 1977 .

[51]  Daniel Donoval,et al.  High-temperature performance of AlGaN/GaN HFETs and MOSHFETs , 2008, Microelectron. Reliab..

[52]  Frank Schwierz,et al.  An electron mobility model for wurtzite GaN , 2005 .

[53]  Shuji Nakamura,et al.  Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN , 1999 .

[54]  J. Lin,et al.  Determination of energy-band offsets between GaN and AlN using excitonic luminescence transition in AlGaN alloys , 2006 .

[55]  F. Calle,et al.  High temperature assessment of nitride-based devices , 2008 .

[56]  Rudiger Quay,et al.  Gallium Nitride Electronics , 2008 .

[57]  Peter A. Houston,et al.  High temperature performance of AlGaN/GaN HEMTs on Si substrates , 2006 .

[58]  E. Kohn,et al.  Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs , 1999, IEEE Electron Device Letters.

[59]  I. Ferguson,et al.  Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy , 2000 .

[60]  T. Saitoh,et al.  Enhanced effect of polarization on electron transport properties in AlGaN/GaN double-heterostructure field-effect transistors , 2000 .

[61]  W. Schaff,et al.  Energy and momentum relaxation of electrons in bulk and 2D GaN , 2004 .