Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk

The streaming instability is a promising mechanism to drive the formation of planetesimals in protoplanetary disks. To trigger this process, it has been argued that sedimentation of solids onto the mid-plane needs to be efficient and therefore that a quiescent gaseous environment is required. It is often suggested that dead-zone or disk-wind structure created by non-ideal magnetohydrodynamical (MHD) effects meets this requirement. However, simulations have shown that the midplane of a dead zone is not completely quiescent. In order to examine the concentration of solids in such an environment, we use the local-shearing-box approximation to simulate a particle-gas system with an Ohmic dead zone including mutual drag force between the gas and the solids. We systematically compare the evolution of the system with ideal or non-ideal MHD, with or without back-reaction drag force from particles on gas, and with varying solid abundances. Similar to previous investigations of dead zone dynamics, we find that particles of dimensionless stopping time $\tau_s=0.1$ do not sediment appreciably more than those in ideal magneto-rotational turbulence, resulting in a vertical scale height an order of magnitude larger than in a laminar disk. Contrary to the expectation that this should curb the formation of planetesimals, we nevertheless find that strong clumping of solids still occurs in the dead zone when solid abundances are similar to the critical value for a laminar environment. This can be explained by the weak radial diffusion of particles near the mid-plane. The results imply that the sedimentation of particles to the mid-plane is not a necessary criterion for the formation of planetesimals by the streaming instability.

[1]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[2]  E. Chiang,et al.  FROM DUST TO PLANETESIMALS: CRITERIA FOR GRAVITATIONAL INSTABILITY OF SMALL PARTICLES IN GAS , 2012, 1209.5397.

[3]  Seth Andrew Jacobson,et al.  The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores , 2015, 1506.01666.

[4]  G. Lesur,et al.  Global simulations of protoplanetary disks with net magnetic flux: I. Non-ideal MHD case , 2016, 1612.00883.

[5]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[6]  Matthew W. Kunz,et al.  Thanatology in protoplanetary discs - The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones , 2014, 1402.4133.

[7]  J. Papaloizou,et al.  Dust settling in local simulations of turbulent protoplanetary disks , 2006, astro-ph/0603153.

[8]  Anders Johansen,et al.  INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION , 2016, 1603.08523.

[9]  Jeffrey S. Oishi,et al.  Turbulent Torques on Protoplanets in a Dead Zone , 2007, astro-ph/0702549.

[10]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[11]  Chao-Chin Yang,et al.  THERMAL-INSTABILITY-DRIVEN TURBULENT MIXING IN GALACTIC DISKS. I. EFFECTIVE MIXING OF METALS , 2012, 1208.4625.

[12]  D. Lynden-Bell,et al.  II. Spiral Arms as Sheared Gravitational Instabilities , 1965 .

[13]  A. Johansen,et al.  PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY , 2009, 0909.0259.

[14]  D. Balsara,et al.  Dust settling in magnetorotationally-driven turbulent discs - II. The pervasiveness of the streaming instability and its consequences , 2009, 0908.2937.

[15]  A. Riols,et al.  Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion , 2018, Astronomy & Astrophysics.

[16]  Local Magnetohydrodynamic Models of Layered Accretion Disks , 2002, astro-ph/0210541.

[17]  G. Lesur,et al.  Local outflows from turbulent accretion disks , 2012, 1210.6664.

[18]  B. Ercolano,et al.  A simple model for the evolution of the dust population in protoplanetary disks , 2012, 1201.5781.

[19]  Heidelberg,et al.  High-resolution simulations of planetesimal formation in turbulent protoplanetary discs , 2010, Proceedings of the International Astronomical Union.

[20]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[21]  A. Johansen,et al.  Forming Planets via Pebble Accretion , 2017 .

[22]  G. Laibe,et al.  Self-induced dust traps: overcoming planet formation barriers , 2017, 1701.01115.

[23]  X. Bai HALL-EFFECT-CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. I. WIND SOLUTIONS AT THE INNER DISK , 2014, 1402.7102.

[24]  Zhaohuan Zhu,et al.  DUST TRANSPORT IN MRI TURBULENT DISKS: IDEAL AND NON-IDEAL MHD WITH AMBIPOLAR DIFFUSION , 2014, 1405.2778.

[25]  I. O. Astronomy,et al.  X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability , 2017, 1709.00361.

[26]  S. Inutsuka,et al.  Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks , 2022 .

[27]  J. Stone,et al.  Nonlinear Evolution of the Magnetorotational Instability in Ion-Neutral Disks , 1998, astro-ph/9802227.

[28]  S. Okuzumi,et al.  THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE , 2013, 1305.1889.

[29]  J. E. Pringle,et al.  Theory of black hole accretion disks , 1999 .

[30]  A. Johansen,et al.  ON THE FEEDING ZONE OF PLANETESIMAL FORMATION BY THE STREAMING INSTABILITY , 2014, 1407.5995.

[31]  A. Youdin,et al.  A Thermodynamic View of Dusty Protoplanetary Disks , 2017, 1708.02945.

[32]  Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Unstratified Disks , 2009, 0907.1897.

[33]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[34]  P. Gremaud,et al.  Super-time-stepping acceleration of explicit schemes for parabolic problems , 1996 .

[35]  N. Turner,et al.  DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING , 2009, 0911.1533.

[36]  On the dynamics of planetesimals embedded in turbulent protoplanetary discs , 2010, 1007.1144.

[37]  A. Youdin,et al.  Particle Stirring in Turbulent Gas Disks: Including Orbital Oscillations , 2007, 0707.2975.

[38]  J. Oishi,et al.  ON HYDRODYNAMIC MOTIONS IN DEAD ZONES , 2009, 0909.0505.

[39]  X. Bai Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics , 2017, 1707.00729.

[40]  J. Stone,et al.  DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION , 2010, 1005.4982.

[41]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[42]  C. Hayashi,et al.  Settling and growth of dust particles in a laminar phase of a low-mass solar nebula , 1986 .

[43]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[44]  Y. Alibert,et al.  Planetesimal formation starts at the snow line , 2017, 1710.00009.

[45]  A. Johansen,et al.  Concentrating small particles in protoplanetary disks through the streaming instability , 2016, 1611.07014.

[46]  D. Balsara,et al.  Dust settling in magnetorotationally driven turbulent discs – I. Numerical methods and evidence for a vigorous streaming instability , 2008, 0810.0246.

[47]  J. Hawley,et al.  RESISTIVITY-DRIVEN STATE CHANGES IN VERTICALLY STRATIFIED ACCRETION DISKS , 2010, 1010.0005.

[48]  A. Johansen,et al.  The structure of protoplanetary discs around evolving young stars , 2014, 1411.3255.

[49]  S. Balbus,et al.  On linear dust–gas streaming instabilities in protoplanetary discs , 2011, 1104.5396.

[50]  MPIA Heidelberg,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods , 2007, astro-ph/0702625.

[51]  R. Nelson,et al.  GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION , 2015, 1501.05431.

[52]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[53]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[54]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[55]  James M. Stone,et al.  Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks , 1996 .

[56]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[57]  P. Armitage,et al.  TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. I. WEAK ACCRETION WITH NO VERTICAL MAGNETIC FLUX , 2012, 1210.4164.

[58]  J. Stone,et al.  LOCAL STUDY OF ACCRETION DISKS WITH A STRONG VERTICAL MAGNETIC FIELD: MAGNETOROTATIONAL INSTABILITY AND DISK OUTFLOW , 2012, 1210.6661.

[59]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[60]  Y. Alibert,et al.  Close-in planetesimal formation by pile-up of drifting pebbles , 2016, 1607.05734.

[61]  A. Johansen,et al.  Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk , 2017, 1703.07895.

[62]  K. Ros Ice Condensation as a Planet Formation Mechanism , 2013, Proceedings of the International Astronomical Union.

[63]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[64]  S. Miyama,et al.  Magnetorotational Instability in Protoplanetary Disks. I. On the Global Stability of Weakly Ionized Disks with Ohmic Dissipation , 1999 .

[65]  B. Dubrulle,et al.  The Dust Subdisk in the Protoplanetary Nebula , 1995 .

[66]  T. Guillot,et al.  Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line , 2016, 1610.09643.

[67]  W. Dobler,et al.  Hydromagnetic turbulence in computer simulations , 2001, astro-ph/0111569.

[68]  X. Bai HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK , 2014, 1409.2511.

[69]  C. Ormel,et al.  Planetesimal formation near the snowline: in or out? , 2017, 1702.02151.

[70]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[71]  Axel Brandenburg,et al.  Mach number dependence of the onset of dynamo action , 2004 .

[72]  Robert F. Stein,et al.  Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow , 1995 .

[73]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[74]  S. Okuzumi,et al.  MODELING MAGNETOROTATIONAL TURBULENCE IN PROTOPLANETARY DISKS WITH DEAD ZONES , 2011, 1108.4892.

[75]  R. Nelson,et al.  On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones , 2010, 1104.3987.

[76]  A. Johansen,et al.  Dust Diffusion in Protoplanetary Disks by Magnetorotational Turbulence , 2005, astro-ph/0501641.

[77]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[78]  A. Johansen,et al.  How to form planetesimals from mm-sized chondrules and chondrule aggregates , 2015, 1501.05314.

[79]  R. Murray-Clay,et al.  Pebble Accretion in Turbulent Protoplanetary Disks , 2017, 1709.03530.