Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

[1]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[2]  Rene Lopez,et al.  Large area nanofabrication of butterfly wing's three dimensional ultrastructures , 2012 .

[3]  Morteza Mahmoudi,et al.  Themed Issue: Chemical and Biological Detection Chemical Society Reviews Optical Sensor Arrays for Chemical Sensing: the Optoelectronic Nose , 2022 .

[4]  E. Lidorikis,et al.  Lithographically tuned one dimensional polymeric photonic crystal arrays , 2015 .

[5]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[6]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[7]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[8]  H. Arwin,et al.  Color changes in thin porous silicon films caused by vapor exposure , 1996 .

[9]  Chunguang Jin,et al.  Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. , 2008, Analytical chemistry.

[10]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[11]  M. R. Baklanov,et al.  Determination of pore size distribution in thin films by ellipsometric porosimetry , 2000 .

[12]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[13]  Charles K. Bayne,et al.  Multivariate Analysis of Quality. An Introduction , 2001 .

[14]  Manuel A. Palacios,et al.  Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water. , 2007, Journal of the American Chemical Society.

[15]  Rongrong Hu,et al.  A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. , 2015, Physical chemistry chemical physics : PCCP.

[16]  K. Suslick,et al.  A colorimetric sensor array for identification of toxic gases below permissible exposure limits. , 2010, Chemical communications.

[17]  Peter Vukusic,et al.  Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response , 2013, Proceedings of the National Academy of Sciences.

[18]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[19]  O. Wolfbeis,et al.  Probes, sensors, and labels: why is real progress slow? , 2013, Angewandte Chemie.

[20]  I. Ozbek,et al.  The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications. , 2012, Optics express.

[21]  Manuele Bernabei,et al.  Design of a very large chemical sensor system for mimicking biological olfaction , 2010 .

[22]  Jun Gao,et al.  Vapor Sensors Based on Optical Interferometry from Oxidized Microporous Silicon Films , 2002 .

[23]  Peng Jiang,et al.  Vapor detection enabled by self-assembled colloidal photonic crystals. , 2012, Journal of colloid and interface science.

[24]  Jan Genzer,et al.  Soft matter gradient surfaces : methods and applications , 2012 .

[25]  A. Yetisen,et al.  Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. , 2014, Chemical reviews.

[26]  Zhongze Gu,et al.  Photonic crystal for gas sensing , 2013 .

[27]  Markus Antonietti,et al.  Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles , 2012, Nature Communications.

[28]  D. Filippini,et al.  Surface plasmon resonance chemical sensing on cell phones. , 2012, Angewandte Chemie.

[29]  D. Diamond,et al.  Chemo/bio-sensor networks , 2006, Nature materials.

[30]  Peretz P. Friedmann,et al.  Current Status and Future Trends , 2001 .

[31]  Eli Flaxer,et al.  Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays , 2014, Nature Communications.

[32]  Jun Gao,et al.  Porous-silicon vapor sensor based on laser interferometry , 2000 .

[33]  H. Haick,et al.  Diagnosing lung cancer in exhaled breath using gold nanoparticles. , 2009, Nature nanotechnology.

[34]  M. Sailor,et al.  Porous Silicon‐Based Optical Microsensors for Volatile Organic Analytes: Effect of Surface Chemistry on Stability and Specificity , 2010 .

[35]  Liang Feng,et al.  An Optoelectronic Nose for Detection of Toxic Gases , 2009, Nature chemistry.

[36]  Cen-Shawn Wu,et al.  Polymer‐Based Photonic Crystals Fabricated with Single‐Step Electron‐Beam Lithography , 2007 .

[37]  Seng Fatt Liew,et al.  Artificial selection for structural color on butterfly wings and comparison with natural evolution , 2014, Proceedings of the National Academy of Sciences.

[38]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[39]  Peter Boeker,et al.  On ‘Electronic Nose’ methodology , 2014 .

[40]  Valerio Romano,et al.  Active fibers from sol-gel derived granulated silica: state of the art and potential , 2010, Workshop on Specialty Optical Fibers and Their Applications.

[41]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[42]  Neal A. Rakow,et al.  A colorimetric sensor array for odour visualization , 2000, Nature.

[43]  Farid A. Harraz,et al.  Porous silicon chemical sensors and biosensors: A review , 2014 .

[44]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Ricardo Gutierrez-Osuna,et al.  Adaptive microsensor systems. , 2010, Annual review of analytical chemistry.

[46]  Benjamin L. Miller,et al.  Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. , 2015, Lab on a chip.

[47]  J. Hupp,et al.  Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings. , 2002, Journal of the American Chemical Society.

[48]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[49]  Zheng Ouyang,et al.  Ambient Mass Spectrometry , 2006, Science.

[50]  Eric R. Ziegel,et al.  Chemometrics: Statistics and Computer Application in Analytical Chemistry , 2001, Technometrics.

[51]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[52]  Xudong Fan,et al.  Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection , 2014, Nature Communications.

[53]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[54]  R. J. Potton,et al.  Reciprocity in optics , 2004 .

[55]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[56]  Paul V. Braun,et al.  High Quality Factor Metallodielectric Hybrid Plasmonic–Photonic Crystals , 2010 .

[57]  E. Zellers,et al.  Limits of recognition for simple vapor mixtures determined with a microsensor array. , 2004, Analytical chemistry.

[58]  M. Lucki,et al.  Structural Tolerances of Optical Characteristics in Various types of Photonic Lattices , 2014 .

[59]  Anne-Claude Romain,et al.  The use of sensor arrays for environmental monitoring: interests and limitations. , 2003, Journal of environmental monitoring : JEM.

[60]  Anja Walter,et al.  Principles Of Chemical Sensors , 2016 .

[61]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[62]  Joanna Aizenberg,et al.  Structural colour in colourimetric sensors and indicators , 2013 .

[63]  Hui Cao,et al.  Control of lasing in biomimetic structures with short-range order. , 2011, Physical review letters.

[64]  H. Martens,et al.  Multivariate analysis of quality , 2000 .

[65]  Geoffrey A Ozin,et al.  Vapor-sensitive bragg mirrors and optical isotherms from mesoporous nanoparticle suspensions. , 2009, ACS nano.

[66]  Michael J. Sailor,et al.  Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications , 2003, Science.

[67]  L. Canham,et al.  Vapor sensing using the optical properties of porous silicon Bragg mirrors , 1999 .

[68]  Radislav A Potyrailo,et al.  Polymeric sensor materials: toward an alliance of combinatorial and rational design tools? , 2006, Angewandte Chemie.

[69]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[70]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[71]  Michael J. Sailor,et al.  Color me sensitive: amplification and discrimination in photonic silicon nanostructures. , 2007, ACS nano.

[72]  W A Groves,et al.  Establishing a limit of recognition for a vapor sensor array. , 1998, Analytical chemistry.

[73]  Determination of oxidative stability of polypropylene using chemical sensors , 2004 .

[74]  Jung Woo Lee,et al.  Soft network composite materials with deterministic and bio-inspired designs , 2015, Nature Communications.

[75]  Fredrik Höök,et al.  Improving the instrumental resolution of sensors based on localized surface plasmon resonance. , 2006, Analytical chemistry.

[76]  Zheng Li,et al.  The Optoelectronic Nose , 2017 .

[77]  Ryan C Bailey,et al.  High-Q optical sensors for chemical and biological analysis. , 2012, Analytical chemistry.

[78]  H. Cao,et al.  Compact spectrometer based on a disordered photonic chip , 2013, Nature Photonics.

[79]  Roberto R. Panepucci,et al.  Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap , 2004 .

[80]  M. Deen,et al.  Low-cost fabrication technologies for nanostructures: state-of-the-art and potential , 2015, Nanotechnology.

[81]  André R Studart,et al.  Self-shaping composites with programmable bioinspired microstructures , 2013, Nature Communications.

[82]  H. V. Shurmer,et al.  The electronic nose , 1994 .

[83]  Cheryl Surman,et al.  Materials and transducers toward selective wireless gas sensing. , 2011, Chemical reviews.

[84]  Katherine A. Bakeev Process analytical technology : spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries , 2010 .

[85]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[86]  Nicholas P. Sergeant,et al.  Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification , 2013, Nature Communications.

[87]  John A Rogers,et al.  Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. , 2014, ACS nano.

[88]  Zhongze Gu,et al.  An Optical Nose Chip Based on Mesoporous Colloidal Photonic Crystal Beads , 2014, Advanced materials.

[89]  Radislav A. Potyrailo,et al.  Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing , 2013 .

[90]  J. Aizenberg,et al.  Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna , 2014, Proceedings of the National Academy of Sciences.

[91]  Radislav A Potyrailo,et al.  Wireless resonant sensor array for high-throughput screening of materials. , 2007, The Review of scientific instruments.

[92]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[93]  Sophie Pfeifer,et al.  Advanced Photonic Structures For Biological And Chemical Detection , 2016 .

[94]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[95]  W. Lu,et al.  Responsive photonic crystal for the sensing of environmental pollutants , 2014 .

[96]  Claudia Pacholski,et al.  Photonic Crystal Sensors Based on Porous Silicon , 2013, Sensors.