Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride

Abstract The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.

[1]  Jesse S. Smith,et al.  A CO2 laser heating system for in situ high pressure-temperature experiments at HPCAT. , 2018, The Review of scientific instruments.

[2]  Jesse S. Smith,et al.  Post-aragonite phases of CaCO$_{3}$ at lower mantle pressures , 2017, 1709.02516.

[3]  Minghui Yang,et al.  Programmed Synthesis of Sn3N4 Nanoparticles via a Soft Chemistry Approach with Urea: Application for Ethanol Vapor Sensing , 2017 .

[4]  I. Silvera,et al.  Observation of the Wigner-Huntington transition to metallic hydrogen , 2016, Science.

[5]  Juyoung Kim,et al.  Enhancement of Mechanical Hardness in SnOxNy with a Dense High-Pressure Cubic Phase of SnO2 , 2016 .

[6]  Claudia Draxl,et al.  Accurate all-electron G 0 W 0 quasiparticle energies employing the full-potential augmented plane-wave method , 2016, 1605.07351.

[7]  Paul F. McMillan,et al.  Carbon nitride frameworks and dense crystalline polymorphs , 2016, 1605.02893.

[8]  J. Owen,et al.  Evaluation of nanocrystalline Sn3N4 derived from ammonolysis of Sn(NEt2)4 as a negative electrode material for Li-ion and Na-ion batteries , 2016 .

[9]  C. Heil,et al.  Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure , 2015, 1512.02132.

[10]  S. Sinogeikin,et al.  The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. , 2015, The Review of scientific instruments.

[11]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[12]  Wilson A. Smith,et al.  Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs , 2015 .

[13]  A. P. Drozdov,et al.  Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.

[14]  A. Salamat,et al.  In situ synchrotron X-ray diffraction in the laser-heated diamond anvil cell: Melting phenomena and synthesis of new materials , 2014 .

[15]  Claudia Draxl,et al.  exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Roald Hoffmann,et al.  High pressure electrides: a predictive chemical and physical theory. , 2014, Accounts of chemical research.

[17]  T. Schulthess,et al.  All-electron GW quasiparticle band structures of group 14 nitride compounds. , 2014, The Journal of chemical physics.

[18]  P. Beck,et al.  Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline , 2013, Journal of synchrotron radiation.

[19]  A. Moewes,et al.  Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes. , 2013, Physical review letters.

[20]  P. McMillan,et al.  Nitrogen-rich transition metal nitrides , 2013 .

[21]  P. McMillan,et al.  Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. , 2013, Inorganic chemistry.

[22]  Gilbert W. Collins,et al.  Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature , 2012, Science.

[23]  E. Gregoryanz,et al.  High-pressure synthesis of lithium hydride , 2012 .

[24]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  U. Waghmare,et al.  Elastic and structural instability of cubic Sn 3 N 4 and C 3 N 4 under pressure , 2010, 1003.2387.

[26]  J. Hao,et al.  Optical properties of the high-pressure phases of SnO(2): first-principles calculation. , 2010, The journal of physical chemistry. A.

[27]  Yanming Ma,et al.  Transparent dense sodium , 2009, Nature.

[28]  A. Hector,et al.  Direct solvothermal synthesis of early transition metal nitrides. , 2008, Inorganic chemistry.

[29]  Markus Antonietti,et al.  Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.

[30]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 310GPa , 2006 .

[31]  C. Ye,et al.  Preparation and characterization of nitrogen-incorporated SnO2 films , 2006 .

[32]  Andrea Mammoli,et al.  Drag reduction on a patterned superhydrophobic surface. , 2006, Physical review letters.

[33]  R. Needs,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[34]  Y. Feng,et al.  Theoretical prediction of the structure and properties of Sn3N4 , 2004 .

[35]  M. Mezouar,et al.  Equations of state of six metals above 94 GPa , 2004 .

[36]  M. J. Herrera-Cabrera,et al.  Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .

[37]  W. Inami,et al.  Optical response of tin nitride thin films prepared by halide chemical vapor deposition under atmospheric pressure , 2003 .

[38]  M. Larsson,et al.  Photoelectrochemical characterisation of indium nitride and tin nitride in aqueous solution , 2002 .

[39]  H. Mao,et al.  Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability , 2001, Nature.

[40]  H. Jacobs,et al.  Sn3N4, ein Zinn(IV)‐nitrid – Synthese und erste Strukturbestimmung einer binären Zinn–Stickstoff‐Verbindung , 1999 .

[41]  R. Riedel,et al.  Synthesis of cubic silicon nitride , 1999, Nature.

[42]  K. Reimann,et al.  Two-photon spectroscopy of SnO2 under hydrostatic pressure , 1999 .

[43]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[44]  K. Shimizu,et al.  Superconductivity in oxygen , 1998, Nature.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  T. Maruyama,et al.  Tin nitride thin films prepared by radio‐frequency reactive sputtering , 1995 .

[47]  J. Chervin,et al.  Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases , 1995 .

[48]  L. Maya Preparation of tin nitride via an amide-imide intermediate , 1992 .

[49]  Cohen,et al.  Band gaps of diamond under anisotropic stress. , 1992, Physical review. B, Condensed matter.

[50]  C. Achete,et al.  Magnetron sputtered tin nitride , 1991 .

[51]  Christensen,et al.  Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state. , 1990, Physical review. B, Condensed matter.

[52]  M. Cardona,et al.  Pressure dependence of the direct optical gap and refractive index of Ge and GaAs , 1989 .

[53]  J. Remy,et al.  Obtention de films étain-azote par pulvérisation cathodique réactive-identification de la phase amorphe Sn3N4 , 1975 .

[54]  I. Silvera,et al.  Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen , 2016 .

[55]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[56]  R. Gordon,et al.  Low-temperature atmospheric pressure chemical vapor deposition of polycrystalline tin nitride thin films , 1992 .

[57]  F. Fischer,et al.  Über die Produkte der Lichtbogen- und Funkentladung in flüssigem Argon bezw. Stickstoff. Dritte Mitteilung: Über Zinnstickstoff und pyrophores Zinn , 1909 .