Pressure‐Tuneable Visible‐Range Band Gap in the Ionic Spinel Tin Nitride
暂无分享,去创建一个
Jesse S. Smith | C. Pickard | Eunja Kim | A. Hector | C. Childs | Changyong Park | A. Salamat | D. Sneed | Miglė Graužinytė | Dean Smith | J. A. Flores-Livas | Jasmine K. Hinton | J. Kearney | Samuel D. S. Fitch
[1] Jesse S. Smith,et al. A CO2 laser heating system for in situ high pressure-temperature experiments at HPCAT. , 2018, The Review of scientific instruments.
[2] Jesse S. Smith,et al. Post-aragonite phases of CaCO$_{3}$ at lower mantle pressures , 2017, 1709.02516.
[3] Minghui Yang,et al. Programmed Synthesis of Sn3N4 Nanoparticles via a Soft Chemistry Approach with Urea: Application for Ethanol Vapor Sensing , 2017 .
[4] I. Silvera,et al. Observation of the Wigner-Huntington transition to metallic hydrogen , 2016, Science.
[5] Juyoung Kim,et al. Enhancement of Mechanical Hardness in SnOxNy with a Dense High-Pressure Cubic Phase of SnO2 , 2016 .
[6] Claudia Draxl,et al. Accurate all-electron G 0 W 0 quasiparticle energies employing the full-potential augmented plane-wave method , 2016, 1605.07351.
[7] Paul F. McMillan,et al. Carbon nitride frameworks and dense crystalline polymorphs , 2016, 1605.02893.
[8] J. Owen,et al. Evaluation of nanocrystalline Sn3N4 derived from ammonolysis of Sn(NEt2)4 as a negative electrode material for Li-ion and Na-ion batteries , 2016 .
[9] C. Heil,et al. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure , 2015, 1512.02132.
[10] S. Sinogeikin,et al. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. , 2015, The Review of scientific instruments.
[11] V. Prakapenka,et al. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .
[12] Wilson A. Smith,et al. Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs , 2015 .
[13] A. P. Drozdov,et al. Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.
[14] A. Salamat,et al. In situ synchrotron X-ray diffraction in the laser-heated diamond anvil cell: Melting phenomena and synthesis of new materials , 2014 .
[15] Claudia Draxl,et al. exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[16] Roald Hoffmann,et al. High pressure electrides: a predictive chemical and physical theory. , 2014, Accounts of chemical research.
[17] T. Schulthess,et al. All-electron GW quasiparticle band structures of group 14 nitride compounds. , 2014, The Journal of chemical physics.
[18] P. Beck,et al. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline , 2013, Journal of synchrotron radiation.
[19] A. Moewes,et al. Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes. , 2013, Physical review letters.
[20] P. McMillan,et al. Nitrogen-rich transition metal nitrides , 2013 .
[21] P. McMillan,et al. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. , 2013, Inorganic chemistry.
[22] Gilbert W. Collins,et al. Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature , 2012, Science.
[23] E. Gregoryanz,et al. High-pressure synthesis of lithium hydride , 2012 .
[24] Chris J Pickard,et al. Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[25] U. Waghmare,et al. Elastic and structural instability of cubic Sn 3 N 4 and C 3 N 4 under pressure , 2010, 1003.2387.
[26] J. Hao,et al. Optical properties of the high-pressure phases of SnO(2): first-principles calculation. , 2010, The journal of physical chemistry. A.
[27] Yanming Ma,et al. Transparent dense sodium , 2009, Nature.
[28] A. Hector,et al. Direct solvothermal synthesis of early transition metal nitrides. , 2008, Inorganic chemistry.
[29] Markus Antonietti,et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.
[30] Y. Akahama,et al. Pressure calibration of diamond anvil Raman gauge to 310GPa , 2006 .
[31] C. Ye,et al. Preparation and characterization of nitrogen-incorporated SnO2 films , 2006 .
[32] Andrea Mammoli,et al. Drag reduction on a patterned superhydrophobic surface. , 2006, Physical review letters.
[33] R. Needs,et al. High-pressure phases of silane. , 2006, Physical review letters.
[34] Y. Feng,et al. Theoretical prediction of the structure and properties of Sn3N4 , 2004 .
[35] M. Mezouar,et al. Equations of state of six metals above 94 GPa , 2004 .
[36] M. J. Herrera-Cabrera,et al. Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .
[37] W. Inami,et al. Optical response of tin nitride thin films prepared by halide chemical vapor deposition under atmospheric pressure , 2003 .
[38] M. Larsson,et al. Photoelectrochemical characterisation of indium nitride and tin nitride in aqueous solution , 2002 .
[39] H. Mao,et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability , 2001, Nature.
[40] H. Jacobs,et al. Sn3N4, ein Zinn(IV)‐nitrid – Synthese und erste Strukturbestimmung einer binären Zinn–Stickstoff‐Verbindung , 1999 .
[41] R. Riedel,et al. Synthesis of cubic silicon nitride , 1999, Nature.
[42] K. Reimann,et al. Two-photon spectroscopy of SnO2 under hydrostatic pressure , 1999 .
[43] V. Barone,et al. Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .
[44] K. Shimizu,et al. Superconductivity in oxygen , 1998, Nature.
[45] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[46] T. Maruyama,et al. Tin nitride thin films prepared by radio‐frequency reactive sputtering , 1995 .
[47] J. Chervin,et al. Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases , 1995 .
[48] L. Maya. Preparation of tin nitride via an amide-imide intermediate , 1992 .
[49] Cohen,et al. Band gaps of diamond under anisotropic stress. , 1992, Physical review. B, Condensed matter.
[50] C. Achete,et al. Magnetron sputtered tin nitride , 1991 .
[51] Christensen,et al. Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state. , 1990, Physical review. B, Condensed matter.
[52] M. Cardona,et al. Pressure dependence of the direct optical gap and refractive index of Ge and GaAs , 1989 .
[53] J. Remy,et al. Obtention de films étain-azote par pulvérisation cathodique réactive-identification de la phase amorphe Sn3N4 , 1975 .
[54] I. Silvera,et al. Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen , 2016 .
[55] M. Ferenets,et al. Thin Solid Films , 2010 .
[56] R. Gordon,et al. Low-temperature atmospheric pressure chemical vapor deposition of polycrystalline tin nitride thin films , 1992 .
[57] F. Fischer,et al. Über die Produkte der Lichtbogen- und Funkentladung in flüssigem Argon bezw. Stickstoff. Dritte Mitteilung: Über Zinnstickstoff und pyrophores Zinn , 1909 .