Compact Hierarchical Bipolar Transistor Modeling With HiCUM

"Compact Hierarchical Bipolar Transistor Modeling with HICUM" will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe:C HBTs fabricated with existing cutting-edge process technology. This book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models.

[1]  E. Kane Theory of Tunneling , 1961 .

[2]  D. E. Thomas,et al.  Junction Transistor Short-Circuit Current Gain and Phase Determination , 1958, Proceedings of the IRE.

[3]  Martti Valtonen,et al.  Improved description of base dynamics in the modelling of bipolar transistors , 1989 .

[4]  H. N. Ghosh,et al.  Computer-aided transistor design, characterization, and optimization , 1967 .

[5]  Ulf Schlichtmann,et al.  The Sizing Rules Method for CMOS and Bipolar Analog Integrated Circuit Synthesis , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  H.-M. Rein,et al.  Analytical current-voltage relations for compact SiGe HBT models. I. The "idealized" HBT , 1999 .

[7]  S. Tiwari A new effect at high currents in heterostructure bipolar transistors , 1988, IEEE Electron Device Letters.

[8]  P. Pavan,et al.  Prediction of impact-ionization-induced snap-back in advanced Si n-p-n BJT's by means of a nonlocal analytical model for the avalanche multiplication factor , 1993 .

[9]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[10]  Hans-Martin Rein,et al.  Analytical high-current model for the transit time of SiGe HBTs , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[11]  I. M. Ross,et al.  The Dependence of Transistor Parameters on the Distribution of Base Layer Resistivity , 1956, Proceedings of the IRE.

[12]  M. Schroter,et al.  Verification of the integral charge-control relation for high-speed bipolar transistors at high current densities , 1985, IEEE Transactions on Electron Devices.

[13]  Shyh Wang,et al.  Fundamentals of semiconductor theory and device physics , 1989 .

[14]  K. P. Roenker,et al.  Dynamic formation of a parasitic barrier to electron flow in SiGe HBTs operating at high current densities , 2000 .

[15]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[16]  P. Chevalier,et al.  A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset , 2008, IEEE Transactions on Microwave Theory and Techniques.

[17]  Bumman Kim,et al.  Improved VBIC model for SiGe HBTs with an unified model of heterojunction barrier effects , 2006, IEEE Transactions on Electron Devices.

[18]  Gabriel M. Rebeiz,et al.  A 12-GHz SiGe phase shifter with integrated LNA , 2005, IEEE Transactions on Microwave Theory and Techniques.

[19]  R. J. McDonald Generalised partitioned-charge-based bipolar transistor modelling methodology , 1988 .

[20]  Alvin J. Joseph,et al.  Neutral base recombination and its influence on the temperature dependence of Early voltage and current gain-Early voltage product in UHV/CVD SiGe heterojunction bipolar transistors , 1997 .

[21]  Peter L. Hagelstein,et al.  Introductory Applied Quantum and Statistical Mechanics , 2004 .

[22]  M. Schroter,et al.  A compact tunneling current and collector breakdown model , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[23]  C. R. Selvakumar,et al.  The general transient charge control relation: a new charge control relation for semiconductor devices , 1991 .

[24]  Matthias Rudolph Limitations of current compact transit-time models for III–V-based HBTs , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[25]  Daniel Terpstra,et al.  Impact ionization and neutral base recombination in SiGe HBTs , 1999, Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024).

[26]  Michael Schroter,et al.  A generalized integral charge-control relation and its application to compact models for silicon-based HBT's , 1993 .

[27]  H. K. Gummel A charge control relation for bipolar transistors , 1970, Bell Syst. Tech. J..

[28]  Michael Schroter Integral Charge-Control Relations , 2005 .

[29]  C. W. Farley Heterojunction bipolar transistors for high speed integrated circuits , 1990, IEEE International Symposium on Circuits and Systems.

[30]  A. Valdes-Garcia,et al.  Millimeter-wave design considerations for power amplifiers in an SiGe process technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[31]  C. Sah Fundamentals of Solid State Electronics , 1991 .

[32]  T. Manku,et al.  Valence energy‐band structure for strained group‐IV semiconductors , 1993 .

[33]  Leon O. Chua,et al.  High-speed non-linear circuit models for p-n junction diodes , 1988 .

[34]  Peter Lindberg,et al.  Radio frequency integrated circuits for 24 GHz radar applications , 2005 .

[35]  J. S. Hamel,et al.  Transient base dynamics of bipolar transistors in high injection , 1994 .

[36]  S.P. Voinigescu,et al.  Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[37]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[38]  Michael Schroter,et al.  Modeling of charge and collector field in Si-based bipolar transistors , 2004 .

[39]  Armin Fischer Stability Constraints in SiGe Epitaxy , 2005 .

[40]  G.A.M. Hurkx,et al.  A new approach to A.C. characterization of bipolar transistors , 1988 .

[41]  D. P. Kennedy,et al.  Extended Charge-Control Model For Bipolar Transistors , 1973 .

[42]  J. Ebers,et al.  Large-Signal Behavior of Junction Transistors , 1954, Proceedings of the IRE.

[43]  P. Weil,et al.  Simulation of excess phase in bipolar transistors , 1978 .

[44]  H. Klose,et al.  The transient integral charge control relation—A novel formulation of the currents in a bipolar transistor , 1987, IEEE Transactions on Electron Devices.

[45]  Gabriel M. Rebeiz,et al.  Design and analysis of a 70-ps SiGe differential RF switch , 2005, IEEE Transactions on Microwave Theory and Techniques.

[46]  Herbert Kroemer,et al.  Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region , 1985 .

[47]  J.W. Slotboom,et al.  Parasitic energy barriers in SiGe HBTs , 1991, IEEE Electron Device Letters.

[48]  G. Fischer,et al.  Hole transport investigation in unstrained and strained SiGe , 1998 .

[49]  Hans-Martin Rein,et al.  Design considerations for very-high-speed Si-bipolar IC's operating up to 50 Gb/s , 1996, IEEE J. Solid State Circuits.

[50]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[51]  L. P. Hunter,et al.  Collector capacitance and high-level injection effects in bipolar transistors , 1975, IEEE Transactions on Electron Devices.

[52]  Michael Schroter,et al.  Two-/Three-Dimensional GICCR for Si/SiGe Bipolar Transistors , 2005 .

[53]  H. C. Poon,et al.  An integral charge control model of bipolar transistors , 1970, Bell Syst. Tech. J..

[54]  Gabriel M. Rebeiz,et al.  An X- and Ku-Band 8-Element Phased-Array Receiver in 0.18-$\mu{\hbox{m}}$ SiGe BiCMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[55]  G. Baccarani,et al.  The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors , 1990, International Technical Digest on Electron Devices.

[56]  David J. Roulston,et al.  Partitioned-charge-based BJT model using transient charge control relations for arbitrary doping and bias conditions , 1993 .

[57]  Michael Schroter,et al.  Investigation of very fast and high-current transients in digital bipolar IC's using both a new compact model and a device simulator , 1995, IEEE J. Solid State Circuits.

[58]  M. Schroter,et al.  Physics-based minority charge and transit time modeling for bipolar transistors , 1999 .

[59]  T. Yao,et al.  65-GHz receiver in SiGe BiCMOS using monolithic inductors and transformers , 2006, Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[60]  G.M. Rebeiz,et al.  A 77 GHz SiGe sub-harmonic balanced mixer , 2005, IEEE Journal of Solid-State Circuits.

[61]  G.M. Rebeiz,et al.  A 40-50-GHz SiGe 1 : 8 differential power divider using shielded broadside-coupled striplines , 2008, IEEE Transactions on Microwave Theory and Techniques.

[62]  Sorin P. Voinigescu,et al.  A scalable high frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1996, Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting.