Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle

[1]  D. Lagoudas,et al.  Modeling of thin layer extensional thermoelectric SMA actuators , 1998 .

[2]  Stelios Kyriakides,et al.  Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension , 1997 .

[3]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[4]  Friedrich K. Straub,et al.  Applications of torsional shape memory alloy actuators for active rotor blade control: opportunities and limitations , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[6]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[7]  Scott R. White,et al.  Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior , 1995 .

[8]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[9]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[10]  Stephen David Howard,et al.  The thermomechanical constitutive experimentation of NiTi shape memory alloy strips and rods , 1995 .

[11]  Yinong Liu,et al.  Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling , 1994 .

[12]  C. Lexcellent,et al.  RL-models of pseudoelasticity and their specification for some shape memory solids , 1994 .

[13]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[14]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[15]  J. Humbeeck,et al.  The two way memory effect in copper-based shape memory alloys - thermodynamics and mechanisms , 1992 .

[16]  Hisaaki Tobushi,et al.  Analysis of thermomechanical behavior of shape memory alloys , 1992 .

[17]  J. Humbeeck,et al.  Thermomechanical cycling, two way memory and concomitant effects in Cu-Zn-Al alloys , 1992 .

[18]  J. Ericksen,et al.  Introduction to the thermodynamics of solids , 1991 .

[19]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[20]  Yinong Liu,et al.  Factors influencing the development of two-way shape memory in NiTi , 1990 .

[21]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[22]  Jordi Ortín,et al.  Thermodynamics of Thermoelastic Martensitic Transformations , 1989 .

[23]  J. Krumhansl,et al.  Nonlinear and nonlocal continuum model of transformation precursors in martensites , 1988 .

[24]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[25]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[26]  Jeff Perkins,et al.  Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys , 1984 .

[27]  F. Falk,et al.  One-dimensional model of shape memory alloys , 1983 .

[28]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[29]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[30]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .