Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary
暂无分享,去创建一个
[1] Kaniadakis,et al. Classical model of bosons and fermions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] H. Haken,et al. Impacts of noise on a field theoretical model of the human brain , 1999 .
[3] N. Kosovskii. Diophantine representations of the sequence of solutions of the Pell equation , 1972 .
[4] Zoltán Daróczy,et al. Generalized Information Functions , 1970, Inf. Control..
[5] A. Compte,et al. Non-equilibrium thermodynamics and anomalous diffusion , 1996 .
[6] A. Rényi. On the dimension and entropy of probability distributions , 1959 .
[7] Angel Plastino,et al. Nonlinear Fokker–Planck equations and generalized entropies , 1998 .
[8] R. Tolman,et al. The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.
[9] A. Plastino. On the universality of thermodynamics' Legendre transform structure , 1997 .
[10] R. S. Mendes. Some general relations in arbitrary thermostatistics , 1997 .
[11] Kaniadakis,et al. Kinetic equation for classical particles obeying an exclusion principle. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] Lisa Borland,et al. Ito-Langevin equations within generalized thermostatistics , 1998 .
[13] Tsallis,et al. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[14] G. Batchelor. Diffusion in a field of homogeneous turbulence , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[15] A. Wehrl. General properties of entropy , 1978 .
[16] P. Landsberg,et al. Distributions and channel capacities in generalized statistical mechanics , 1998 .
[17] Jan Havrda,et al. Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.
[18] Lisa Borland,et al. Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .
[19] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[20] Sumiyoshi Abe,et al. A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics , 1997 .
[21] Ernesto P. Borges,et al. A family of nonextensive entropies , 1998 .
[22] Constantino Tsallis,et al. Non-extensive thermostatistics: brief review and comments , 1995 .
[23] N. G. van Kampen,et al. Itô versus Stratonovich , 1981 .
[24] A. R. Plastino,et al. Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .