Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary

The present study extends the correspondence principle of Martinez et al. that establishes a link between nonlinear Fokker–Planck equations (NLFPEs) and the variational principle approach of the theory of canonical ensembles. By virtue of the extended correspondence principle we reobtain results of Kaniadakis and Quarati for Bose and Fermi systems and find relations similar to those derived by Plastino and Plastino and recently by Borland concerning the entropy of nonextensive thermostatistics introduced in physics by Tsallis. Moreover, we propose NLFPEs related to the Renyi entropy and to the entropy proposed by Sharma and Mittal. The latter comprises Tsallis’ entropy and the Renyi entropy.

[1]  Kaniadakis,et al.  Classical model of bosons and fermions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  H. Haken,et al.  Impacts of noise on a field theoretical model of the human brain , 1999 .

[3]  N. Kosovskii Diophantine representations of the sequence of solutions of the Pell equation , 1972 .

[4]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[5]  A. Compte,et al.  Non-equilibrium thermodynamics and anomalous diffusion , 1996 .

[6]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[7]  Angel Plastino,et al.  Nonlinear Fokker–Planck equations and generalized entropies , 1998 .

[8]  R. Tolman,et al.  The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.

[9]  A. Plastino On the universality of thermodynamics' Legendre transform structure , 1997 .

[10]  R. S. Mendes Some general relations in arbitrary thermostatistics , 1997 .

[11]  Kaniadakis,et al.  Kinetic equation for classical particles obeying an exclusion principle. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Lisa Borland,et al.  Ito-Langevin equations within generalized thermostatistics , 1998 .

[13]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  G. Batchelor Diffusion in a field of homogeneous turbulence , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  A. Wehrl General properties of entropy , 1978 .

[16]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[17]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[18]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[19]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[20]  Sumiyoshi Abe,et al.  A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics , 1997 .

[21]  Ernesto P. Borges,et al.  A family of nonextensive entropies , 1998 .

[22]  Constantino Tsallis,et al.  Non-extensive thermostatistics: brief review and comments , 1995 .

[23]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[24]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .