Initial tuning of predictive controllers by reverse engineering

This paper demonstrates a method for finding the cost function and state observer to be used in model predictive control (MPC) so that when constraints are inactive a pre-existing low order controller is reproduced. The MPC controller thereby inherits its desirable properties. This can be used as a baseline for further tuning. The available degrees of design freedom are explored, in order to facilitate, as appropriate, exploitation of constraint-handling, offset-free and redundancy management capabilities of MPC.

[1]  Stephen J. Wright,et al.  Applying new optimization algorithms to more predictive control , 1996 .

[2]  Jan M. Maciejowski Reconfiguring control systems by optimization. , 1997 .

[3]  Pierre Apkarian,et al.  Launcher attitude control: discrete-time robust design and gain-scheduling , 2003 .

[4]  D. Alazard,et al.  Cross standard form: a solution to improve a given controller with H 2 or H ∞ specifications , 2006 .

[5]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[6]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[7]  Pierre Apkarian,et al.  Exact observer-based structures for arbitrary compensators , 1999 .

[8]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Jan M. Maciejowski,et al.  REVERSE-ENGINEERING EXISTING CONTROLLERS FOR MPC DESIGN , 2007 .

[10]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[11]  J. M. Maciejowski,et al.  RECONFIGURABLE CONTROL USING CONSTRAINED OPTIMIZATION , 1997 .

[12]  A. Jameson,et al.  Optimality of linear control systems , 1972 .

[13]  Jan M. Maciejowski,et al.  The Implicit Daisy-Chaining Property of Constrained Predictive Control , 1997 .

[14]  Douglas J Bender,et al.  Computing the estimator-controller form of a compensator , 1985 .

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: A Practical Engineering Approach , 1997 .

[17]  Gabriele Pannocchia,et al.  Robust model predictive control with guaranteed setpoint tracking , 2004 .

[18]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[19]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  James B. Rawlings,et al.  Linear programming and model predictive control , 2000 .

[21]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[22]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .

[23]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[24]  Daniel Alazard Cross Standard Form for generalized inverse problem:application to lateral flight control of a highly flexible aircraft , 2002 .

[25]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .