Model checking action- and state-labelled Markov chains

In this paper we introduce the logic asCSL, an extension of continuous stochastic logic (CSL), which provides powerful means to characterise execution paths of action- and state-labelled Markov chains. In asCSL, path properties are characterised by regular expressions over actions and state-formulas. Thus, the executability of a path not only depends on the available actions but also on the validity of certain state formulas in intermediate states. Our main result is that the model checking problem for asCSL can be reduced to CSL model checking on a modified Markov chain, which is obtained through a product automaton construction. We provide a case study of a scalable cellular phone system which shows how the logic asCSL and the model checking procedure can be applied in practice.

[1]  Bernhard Walke,et al.  Mobile Radio Networks , 1999 .

[2]  Adnan Aziz,et al.  It Usually Works: The Temporal Logic of Stochastic Systems , 1995, CAV.

[3]  William H. Sanders,et al.  State-Space Support for Path-Based Reward Variables , 1999, Perform. Evaluation.

[4]  H. Hermanns,et al.  Syntax , Semantics , Equivalences , and Axioms for MTIPP y , 1994 .

[5]  Christel Baier,et al.  On the Logical Characterisation of Performability Properties , 2000, ICALP.

[6]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[7]  Christel Baier,et al.  Model Checking pathCSL , 2003 .

[8]  Rance Cleaveland,et al.  A Theory of Testing for Markovian Processes , 2000, CONCUR.

[9]  Joachim Meyer-Kayser Automatische Verifikation stochastischer Systeme , 2004 .

[10]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[11]  Pierre Wolper,et al.  Specification and synthesis of communicating processes using an extended temporal logic: (preliminary version) , 1982, POPL '82.

[12]  Joost-Pieter Katoen,et al.  Towards Model Checking Stochastic Process Algebra , 2000, IFM.

[13]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[14]  BaierChristel,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2003 .

[15]  Raimo Kantola,et al.  Performance evaluation of GSM handover traffic in a GPRS/GSM network , 2003, Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003.

[16]  Prakash Panangaden,et al.  Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes , 2003, J. Log. Algebraic Methods Program..

[17]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[18]  Robert K. Brayton,et al.  Verifying Continuous Time Markov Chains , 1996, CAV.

[19]  Boudewijn R. Haverkort,et al.  On the efficient sequential and distributed generation of very large Markov chains from stochastic Petri nets , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[20]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[21]  Joost-Pieter Katoen,et al.  Implementing a Model Checker for Performability Behaviour , 2001 .

[22]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[23]  Christel Baier,et al.  Approximate Symbolic Model Checking of Continuous-Time Markov Chains , 1999, CONCUR.

[24]  Christel Baier,et al.  Model Checking Continuous-Time Markov Chains by Transient Analysis , 2000, CAV.

[25]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.