The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution

A close-up view of the ribosome’s 79 proteins and 5500 RNA nucleotides. Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae—including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1—at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.

[1]  S. Steinberg,et al.  A hierarchical model for evolution of 23S ribosomal RNA , 2009, Nature.

[2]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[3]  C. Oubridge,et al.  Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution , 2009, Nature.

[4]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[5]  H. Hartley,et al.  Tests of significance in harmonic analysis. , 1949, Biometrika.

[6]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[7]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[8]  O. Meyuhas,et al.  Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. , 2006, Trends in biochemical sciences.

[9]  R. Parker,et al.  Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. , 2011, RNA.

[10]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[11]  J. Dinman,et al.  An Extensive Network of Information Flow through the B1b/c Intersubunit Bridge of the Yeast Ribosome , 2011, PLoS ONE.

[12]  Armin Wagner,et al.  Protein crystallography with a novel large-area pixel detector , 2006 .

[13]  J. Dinman,et al.  Ribosomal protein L3: gatekeeper to the A site. , 2007, Molecular cell.

[14]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[15]  A. Sachs,et al.  Glucose depletion rapidly inhibits translation initiation in yeast. , 2000, Molecular biology of the cell.

[16]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[17]  Andrej Sali,et al.  Comprehensive molecular structure of the eukaryotic ribosome. , 2009, Structure.

[18]  J. Cate,et al.  Structures of the Ribosome in Intermediate States of Ratcheting , 2009, Science.

[19]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[20]  M. Yusupov,et al.  Structural aspects of messenger RNA reading frame maintenance by the ribosome , 2010, Nature Structural &Molecular Biology.

[21]  Adam Godzik,et al.  Flexible structure alignment by chaining aligned fragment pairs allowing twists , 2003, ECCB.

[22]  Yingpu Yu,et al.  Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors , 2011, Nucleic acids research.

[23]  A. Himmelbach,et al.  A Plant Viral “Reinitiation” Factor Interacts with the Host Translational Machinery , 2001, Cell.

[24]  T. Wada,et al.  The Arabidopsis STV1 Protein, Responsible for Translation Reinitiation, Is Required for Auxin-Mediated Gynoecium Patterningw⃞ , 2005, The Plant Cell Online.

[25]  J. Cate,et al.  Structural basis for the control of translation initiation during stress , 2004, Nature Structural &Molecular Biology.

[26]  References , 1971 .

[27]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[28]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[30]  L. Ryabova,et al.  A new plant protein interacts with eIF3 and 60S to enhance virus‐activated translation re‐initiation , 2009, The EMBO journal.

[31]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[32]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[33]  Harry F Noller,et al.  Structural dynamics of the ribosome. , 2008, Current opinion in chemical biology.

[34]  Olivier Poch,et al.  Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. , 2002, Nucleic acids research.

[35]  P. Sergiev,et al.  Saturation Mutagenesis of 5S rRNA inSaccharomyces cerevisiae , 2001, Molecular and Cellular Biology.

[36]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  I. Shatsky,et al.  Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome , 2008, Nucleic acids research.

[38]  M. Yusupov,et al.  Crystal Structure of the Eukaryotic Ribosome , 2010, Science.

[39]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[40]  Holger Stark,et al.  Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. , 2005, Structure.

[41]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[42]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[43]  N. Ban,et al.  Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1 , 2011, Science.

[44]  W. Hendrickson,et al.  Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. , 2011, Acta crystallographica. Section D, Biological crystallography.

[45]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[46]  B. Lang,et al.  A simple method for the large-scale preparation of mitochondria from microorganisms. , 1977, Analytical biochemistry.

[47]  M. V. Van Dyke,et al.  Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. , 2006, Journal of molecular biology.

[48]  Narayanan Eswar,et al.  Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions , 2001, Cell.

[49]  S. Gerbi The evolution of eukaryotic ribosomal DNA. , 1986, Bio Systems.

[50]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[51]  Eric Westhof,et al.  Structure of the ribosome-bound cricket paralysis virus IRES RNA , 2006, Nature Structural &Molecular Biology.

[52]  Johannes Söding,et al.  Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution , 2010, Proceedings of the National Academy of Sciences.

[53]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[54]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[55]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[56]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[57]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[58]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[59]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[60]  Daniel N. Wilson,et al.  PSRP1 Is Not a Ribosomal Protein, but a Ribosome-binding Factor That Is Recycled by the Ribosome-recycling Factor (RRF) and Elongation Factor G (EF-G)* , 2009, The Journal of Biological Chemistry.

[61]  W. H. Mager,et al.  A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. , 1997, Nucleic acids research.