THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES

In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, M{sub C} . Such massive NBWDs are hot (kT {approx} 100 eV), luminous (L {approx} 10{sup 38} erg s{sup -1}), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-M{sub C} models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to M{sub C} .

[1]  J. Greiner,et al.  The first two transient supersoft X-ray sources in M 31 globular clusters and the connection to classical novae , 2008, 0811.0718.

[2]  A. Kong,et al.  Evidence of an Intermediate-Mass Black Hole: Chandra and XMM-Newton Observations of the Ultraluminous Supersoft X-Ray Source in M101 during Its 2004 Outburst , 2004, astro-ph/0410671.

[3]  J. Neill,et al.  TYPE Ia SUPERNOVAE RATES AND GALAXY CLUSTERING FROM THE CFHT SUPERNOVA LEGACY SURVEY , 2008, 0801.4968.

[4]  S. Rappaport,et al.  Time-dependent Calculations of Ionization Nebulae Surrounding Supersoft X-Ray Sources , 1996 .

[5]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[6]  S. Rappaport,et al.  The derived population of luminous supersoft X-ray sources , 1994 .

[7]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[8]  J. Greiner Catalog of supersoft X-ray sources , 2000 .

[9]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[10]  M. Fujimoto A Theory of Hydrogen Shell Flashes on Accreting White Dwarfs - Part Two - the Stable Shell Burning and the Recurrence Period of Shell Flashes , 1982 .

[11]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[12]  M. Livio,et al.  On the Frequency of Occurrence of Recurrent Novae and Their Role as Type Ia Supernova Progenitors , 1996 .

[13]  M. Turatto,et al.  The rate of (type IA) SNE in elliptical galaxies , 1994 .

[14]  The Open University,et al.  The X-Ray Properties of M101 ULX-1 = CXOKM101 J140332.74+542102 , 2005 .

[15]  M. Orio A Close Look at the Population of Supersoft and Quasi-soft X-Ray Sources Observed in M31 with XMM-Newton , 2006 .

[16]  J. Bregman,et al.  CHANDRA X-RAY OBSERVATIONS OF THE X-RAY FAINT ELLIPTICAL GALAXY NGC 4697 , 2001, astro-ph/0104070.

[17]  G. Fabbiano,et al.  A Variable Ultraluminous Supersoft X-Ray Source in ``The Antennae'': Stellar-Mass Black Hole or White Dwarf? , 2003 .

[18]  R. Di Stefano,et al.  An Unusual Spectral State of an Ultraluminous Very Soft X-Ray Source during Outburst , 2005, astro-ph/0509567.

[19]  K. Dawson,et al.  A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.

[20]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[21]  R. Malina,et al.  Ionization nebulae surrounding supersoft X-ray sources , 1994 .

[22]  I. Iben Hot accreting white dwarfs in the quasi-static approximation , 1982 .

[23]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[24]  Nijmegen,et al.  XMM-Newton observations of AM CVn binaries: V396 Hya and SDSS J1240–01 , 2006, astro-ph/0607178.

[25]  S. L. Snowden,et al.  Chandra X-Ray Sources in M101 , 2001, astro-ph/0107133.

[26]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[27]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[28]  G. Nelemans,et al.  On the detection of the progenitor of the type Ia supernova 2007on , 2008, 0802.2097.

[29]  R. Di Stefano,et al.  Luminous Supersoft X-Ray Sources in External Galaxies , 2003, astro-ph/0301162.

[30]  B. Patel,et al.  Populations of supersoft X-ray sources: Novae, tidal disruption, Type Ia supernovae, accretion-induced collapse, ionization, and intermediatemass black holes? , 2009, 0909.2046.

[31]  G. Nelemans,et al.  Discovery of the progenitor of the type Ia supernova 2007on , 2008, Nature.

[32]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[33]  I. Ribas,et al.  Testing the initial-final mass relationship of white dwarfs , 2009 .

[34]  R. F. Jameson,et al.  New Praesepe white dwarfs and the initial mass-final mass relation , 2006 .

[35]  R. Di Stefano,et al.  The Discovery of Quasisoft and Supersoft Sources in External Galaxies , 2003 .

[36]  R. Di Stefano,et al.  Formation and evolution of luminous supersoft X-ray sources , 1994 .

[37]  Allyn Tennant,et al.  CHANDRA DISCOVERY OF LUMINOUS SUPERSOFT X-RAY SOURCES IN M81 , 2002 .

[38]  X-RAY POINT SOURCES IN THE SOMBRERO GALAXY: VERY SOFT SOURCES, THE GLOBULAR CLUSTER/LOW-MASS X-RAY BINARY CONNECTION, AND AN OVERVIEW , 2003, astro-ph/0306441.

[39]  G. Sala,et al.  Optical novae: the major class of supersoft X-ray sources in M 31 , 2005, astro-ph/0504321.

[40]  P. W. Hodge,et al.  Supersoft X-ray sources in M31. I. A Chandra survey and an extension to quasi-soft sources , 2004 .