Bis(dithioline)-Based Metal–Organic Frameworks with Superior Electronic and Magnetic Properties: Spin Frustration to Spintronics and Gas Sensing

Inspired by recent experimental synthesis of two-dimensional cobalt bis(dithioline) (CoBHT) metal–organic surface (J. Am. Chem. Soc., 2015, 137, 118–121), herein, using first principle calculations, we have investigated the electronic and magnetic properties of two-dimensional BHT-based metal (M = Co, Fe, Mn, Cr)-organic frameworks (MBHT). Our detailed theoretical calculations predict that CoBHT, FeBHT, and MnBHT are planar ferromagnetic (FM) half-metals, whereas CrBHT is planar spin-frustrated kagome lattice antiferromagnetic (AFM) semimetal, a new state of matter referred as spin-liquid. These planar ferromagnetic half-metal materials are promising candidates for spintronic devices. Further, polluting gas such as CO can be detected by these MOFs as there is remarkable variation of electronic and magnetic properties after gas adsorption. Interestingly, these properties have been found to be a function of coordination environment of central metal atom, which is actually a coordinatively unsaturated (CUS) ...

[1]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[2]  H. Nakanishi,et al.  Adsorption of diatomic molecules on iron tape-porphyrin: A comparative study , 2008 .

[3]  Sanliang Ling,et al.  Unusually Large Band Gap Changes in Breathing Metal-Organic Framework Materials , 2015 .

[4]  Yugui Yao,et al.  Quantum spin Hall and Z 2 metallic states in an organic material , 2014 .

[5]  Gernot Frenking,et al.  Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond ☆ , 2001 .

[6]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[7]  Woo Youn Kim,et al.  Chromium porphyrin arrays as spintronic devices. , 2011, Journal of the American Chemical Society.

[8]  Cheng Wang,et al.  Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. , 2012, Chemical reviews.

[9]  M. Troyer,et al.  Topologically protected quantum bits using Josephson junction arrays , 2001, Nature.

[10]  Roald Hoffmann,et al.  QUALITATIVE DISCUSSION OF ALTERNATIVE COORDINATION MODES OF DIATOMIC LIGANDS IN TRANSITION METAL COMPLEXES , 1977 .

[11]  X. Zeng,et al.  Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. , 2015, Physical chemistry chemical physics : PCCP.

[12]  S. Sanvito,et al.  Tuning the magneto-transport properties of nickel-cyclopentadienyl multidecker clusters by molecule-electrode coupling manipulation. , 2010, ACS nano.

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[15]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[16]  Xinliang Feng,et al.  Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. , 2015, Angewandte Chemie.

[17]  M. Punk,et al.  Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice , 2013, Nature Physics.

[18]  Mircea Dincă,et al.  Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[19]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[20]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[21]  H. Nishihara,et al.  Interfacial Synthesis of Electrically Conducting Palladium Bis(dithiolene) Complex Nanosheet. , 2015, ChemPlusChem.

[22]  Power-law spin correlations in pyrochlore antiferromagnets , 2004, cond-mat/0407005.

[23]  Christopher H. Hendon,et al.  Chemical principles underpinning the performance of the metal–organic framework HKUST-1 , 2015, Chemical science.

[24]  R. Banerjee,et al.  Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[25]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .

[26]  M. Zaworotko,et al.  Crystal engineering of a nanoscale Kagomé lattice. , 2002, Angewandte Chemie.

[27]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.

[28]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[29]  L. Sarkisov Toward Rational Design of Metal−Organic Frameworks for Sensing Applications: Efficient Calculation of Adsorption Characteristics in Zero Loading Regime , 2012 .

[30]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[31]  Feng Liu,et al.  Prediction of a two-dimensional organic topological insulator. , 2013, Nano letters.

[32]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[33]  James P. Lewis,et al.  Interaction of the Explosive Molecules RDX and TATP with IRMOF-8 , 2010 .

[34]  B. Mandal,et al.  A new two-dimensional metal-organic framework with high spin-filtering efficiency. , 2015, Physical chemistry chemical physics : PCCP.

[35]  K. Yoshizawa,et al.  Through-Bond and Through-Space Interactions of Organic Radicals Coupled by m-Phenylene. , 1996 .

[36]  D. D’Alessandro,et al.  Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation , 2014 .

[37]  Zheng Chen,et al.  First principles study of the electronic properties of a Ni3(2,3,6,7,10,11-hexaaminotriphenylene)2 monolayer under biaxial strain , 2015 .

[38]  S. Scheiner,et al.  Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn , 2002 .

[39]  Ying Dai,et al.  Novel two-dimensional tetragonal monolayer: metal-TCNQ networks. , 2013, The journal of physical chemistry. A.

[40]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[41]  Russell K. Feller,et al.  Structural diversity and chemical trends in hybrid inorganic-organic framework materials. , 2006, Chemical communications.

[42]  Jianwen Jiang,et al.  Ion Exchange in Metal–Organic Framework for Water Purification: Insight from Molecular Simulation , 2012 .

[43]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[44]  Krista S. Walton,et al.  Gas Adsorption Study on Mesoporous Metal−Organic Framework UMCM-1 , 2010 .

[45]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[46]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[47]  H. Kitagawa,et al.  Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = Mn(II), Fe(II), Co(II); NH(prol)3(+) = tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. , 2009, Journal of the American Chemical Society.

[48]  Xiaoming Zhang,et al.  Half-metallicity of a kagome spin lattice: the case of a manganese bis-dithiolene monolayer. , 2013, Nanoscale.

[49]  J. Rodriguez-Rivera,et al.  Physical realization of a quantum spin liquid based on a complex frustration mechanism , 2016, Nature Physics.

[50]  Anthony K. Cheetham,et al.  There's Room in the Middle , 2007, Science.

[51]  Hiroaki Maeda,et al.  Coordination Programming of Two-Dimensional Metal Complex Frameworks. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[52]  G. Mínguez Espallargas,et al.  Dynamic magnetic MOFs. , 2013, Chemical Society reviews.

[53]  K. Scheidt,et al.  Lewis Acid Activation of a Hydrogen Bond Donor Metal–Organic Framework for Catalysis , 2016 .

[54]  C. Jallut,et al.  Role of Structure and Chemistry in Controlling Separations of CO2/CH4 and CO2/CH4/CO Mixtures over Honeycomb MOFs with Coordinatively Unsaturated Metal Sites , 2012 .

[55]  C. Mirkin,et al.  Carborane-based metal-organic framework with high methane and hydrogen storage capacities , 2013 .

[56]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[57]  M. Ratner,et al.  Catalysis by a Zinc-Porphyrin-Based Metal–Organic Framework: From Theory to Computational Design , 2012 .

[58]  S. Pati,et al.  Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices. , 2005, The Journal of chemical physics.

[59]  S. Pati,et al.  Kagome network compounds and their novel magnetic properties. , 2008, Chemical communications.

[60]  Qiang Sun,et al.  Enhanced ferromagnetism in a Mn(3)C(12)N(12)H(12) sheet. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  Jinlan Wang,et al.  Topological insulators based on 2D shape-persistent organic ligand complexes. , 2015, Nanoscale.

[62]  G. Evenbly,et al.  Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a kagome lattice. , 2009, Physical review letters.

[63]  J. Long,et al.  Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2013 .

[64]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[65]  William W. Yu,et al.  Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots , 2015 .

[66]  C. Li,et al.  Metal-organic framework threaded with aminated polymer formed in situ for fast and reversible ion exchange. , 2014, Journal of the American Chemical Society.

[67]  Daoben Zhu,et al.  A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour , 2015, Nature Communications.

[68]  L. Chou,et al.  Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. , 2014, ACS nano.

[69]  Michael James,et al.  Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) , 2014 .

[70]  Qiang Sun,et al.  Magnetism of phthalocyanine-based organometallic single porous sheet. , 2011, Journal of the American Chemical Society.

[71]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[72]  S. Sorella,et al.  Gapless spin-liquid phase in the kagome spin-(1)/(2) Heisenberg antiferromagnet , 2012, 1209.1858.

[73]  M. Allendorf,et al.  Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications , 2012 .

[74]  Mingwen Zhao,et al.  Gas Adsorption Effects on the Electronic Properties of Two-Dimensional Nickel Bis(dithiolene) Complex , 2016 .

[75]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[76]  X. Duan,et al.  Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. , 2012, Chemistry.

[77]  Hao Jin,et al.  Ferromagnetism of undoped GaN mediated by through-bond spin polarization between nitrogen dangling bonds , 2009 .

[78]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[79]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[80]  M. Dong,et al.  Two-Dimensional π-Conjugated Metal Bis(dithiolene) Complex Nanosheets as Selective Catalysts for Oxygen Reduction Reaction , 2015 .

[81]  Jeffrey R. Long,et al.  Adsorption of two gas molecules at a single metal site in a metal-organic framework. , 2016, Chemical communications.

[82]  Daniel G Nocera,et al.  Spin chirality on a two-dimensional frustrated lattice , 2005, Nature materials.