Automated Innovization for Simultaneous Discovery of Multiple Rules in Bi-objective Problems

[1]  Kalyanmoy Deb,et al.  Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique , 2011 .

[2]  Kalyanmoy Deb,et al.  Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design , 2010, IEEE Congress on Evolutionary Computation.

[3]  Stéphane Doncieux,et al.  Exploring new horizons in evolutionary design of robots , 2009 .

[4]  Akira Oyama,et al.  Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition , 2009 .

[5]  Eckart Zitzler,et al.  Pattern identification in pareto-set approximations , 2008, GECCO '08.

[6]  Kalyanmoy Deb,et al.  Multi-objective Evolutionary Algorithms for Resource Allocation Problems , 2007, EMO.

[7]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[8]  Shigeru Obayashi,et al.  Multi-Objective Design Exploration for Aerodynamic Configurations , 2005 .

[9]  Kalyanmoy Deb,et al.  Unveiling innovative design principles by means of multiple conflicting objectives , 2003 .

[10]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[13]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[14]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[15]  Henri Ruotsalainen,et al.  New visualization aspects related to intelligent solution procedure in papermaking optimization , 2008 .