Wiretap Channels: Implications of the More Capable Condition and Cyclic Shift Symmetry

Characterization of the rate-equivocation region of a general wiretap channel involves two auxiliary random variables: <formula formulatype="inline"><tex Notation="TeX">$U$</tex></formula>, for rate splitting and <formula formulatype="inline"> <tex Notation="TeX">$V$</tex></formula>, for channel prefixing. In this paper, we explore specific classes of wiretap channels for which the evaluation of the rate-equivocation region is simpler. We show that if the wiretap channel is more capable, <formula formulatype="inline"><tex Notation="TeX">$V=X$</tex></formula> is optimal and the boundary of the rate-equivocation region is achieved by varying rate splitting <formula formulatype="inline"> <tex Notation="TeX">$U$</tex></formula> alone. Conversely, we show under a mild condition that if the wiretap channel is not more capable, then <formula formulatype="inline"><tex Notation="TeX">$V=X$</tex> </formula> is strictly suboptimal. Next, we focus on the class of cyclic shift symmetric wiretap channels. We show that optimal rate splitting <formula formulatype="inline"><tex Notation="TeX">$U$</tex> </formula> that achieves the boundary of the rate-equivocation region is uniform with cardinality <formula formulatype="inline"><tex Notation="TeX">$\vert{\cal X}\vert$</tex></formula> and the prefix channel between optimal <formula formulatype="inline"><tex Notation="TeX">$U$</tex></formula> and <formula formulatype="inline"><tex Notation="TeX">$V$</tex> </formula> is expressed as cyclic shifts of the solution of an auxiliary optimization problem over a single variable. We provide a special class of cyclic shift symmetric wiretap channels for which <formula formulatype="inline"><tex Notation="TeX">$U=\phi$</tex></formula> is optimal. We apply our results to the binary-input cyclic shift symmetric wiretap channels and thoroughly characterize the rate-equivocation regions of the BSC-BEC and BEC-BSC wiretap channels.

[1]  Bike Xie,et al.  A mutual information invariance approach to symmetry in discrete memoryless channels , 2008, 2008 Information Theory and Applications Workshop.

[2]  S. K. Leung-Yan-Cheong On a special class of wiretap channels , 1976 .

[3]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[4]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[5]  Abbas El Gamal,et al.  Lecture Notes on Network Information Theory , 2010, ArXiv.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  Chandra Nair,et al.  Capacity regions of two new classes of 2-receiver broadcast channels , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  Sik K. Leung-Yan-Cheong On a special class of wiretap channels (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[9]  Uri Erez,et al.  Noise prediction for channels with side information at the transmitter , 2000, IEEE Trans. Inf. Theory.

[10]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[11]  Sennur Ulukus,et al.  Wiretap channels: Roles of rate splitting and channel prefixing , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[12]  Marten van Dijk On a special class of broadcast channels with confidential messages , 1997, IEEE Trans. Inf. Theory.

[13]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.