Improvements of explicit crack surface representation and update within the generalized finite element method with application to three‐dimensional crack coalescence

SUMMARY This paper presents improvements to three-dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non-convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non-planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non-convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  P. Goel,et al.  The Statistical Nature of Fatigue Crack Propagation , 1979 .

[2]  Jean-Daniel Boissonnat,et al.  A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2004, Discret. Comput. Geom..

[3]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[4]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[5]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[6]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[7]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[8]  T. Belytschko,et al.  A method for multiple crack growth in brittle materials without remeshing , 2004 .

[9]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[10]  Dae-Jin Kim,et al.  TWO-SCALE 3D ANALYSIS OF REFLECTIVE CRACKS IN AIRFIELD PAVEMENTS , 2013 .

[11]  Dae-Jin Kim,et al.  Analysis of Interacting Cracks Using the Generalized Finite Element Method With Global-Local Enrichment Functions , 2008 .

[12]  Jorge Luis,et al.  Three-dimensional numerical analysis of reflective cracks in airfield pavements , 2013 .

[13]  Martin W. Heinstein,et al.  An analysis of smoothed particle hydrodynamics , 1994 .

[14]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[15]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[16]  William G. Buttlar,et al.  Analysis of Reflective Cracks in Airfield Pavements using a 3-D Generalized Finite Element Method , 2010 .

[17]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[18]  I. Babuska,et al.  The generalized finite element method , 2001 .

[19]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[20]  M. Duflot A study of the representation of cracks with level sets , 2007 .

[21]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[22]  G. Kullmer,et al.  A new criterion for the prediction of crack development in multiaxially loaded structures , 2002 .

[23]  Hans Albert Richard,et al.  Computational simulation and experimental findings of three-dimensional fatigue crack growth in a single-edge notched specimen under torsion loading , 2005 .

[24]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[25]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[26]  Carlos Armando Duarte,et al.  Extraction of Stress Intensity Factors for the Simulation of 3-D Crack Growth with the Generalized Finite Element Method , 2013 .

[27]  Gerd Heber,et al.  Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .

[28]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[29]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[30]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[31]  Dae-Jin Kim,et al.  Analysis of three‐dimensional fracture mechanics problems: A two‐scale approach using coarse‐generalized FEM meshes , 2010 .

[32]  Xiangmin Jiao,et al.  Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems , 2009 .

[33]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .

[34]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[35]  Thomas-Peter Fries,et al.  Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description , 2012 .

[36]  Hans Albert Richard,et al.  Development of a new software for adaptive crack growth simulations in 3D structures , 2003 .

[37]  Stéphane Bordas,et al.  XFEM AND MESH ADAPTATION: A MARRIAGE OF CONVENIENCE , 2008 .

[38]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[39]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[40]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[41]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[42]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[43]  Ivo Babuska,et al.  The Splitting Method as a Tool for Multiple Damage Analysis , 2005, SIAM J. Sci. Comput..

[44]  Peter Wriggers,et al.  An adaptive multiscale method for crack propagation and crack coalescence , 2013 .

[45]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[46]  Eitan Grinspun,et al.  Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method , 2010 .

[47]  Wolfgang A. Wall,et al.  Interface handling for three‐dimensional higher‐order XFEM‐computations in fluid–structure interaction , 2009 .

[48]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[49]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[50]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[51]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[52]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[53]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[54]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[55]  C. Duarte,et al.  A generalized finite element method with global-local enrichment functions for confined plasticity problems , 2012 .

[56]  Xiangmin Jiao,et al.  Three-dimensional crack growth with hp-generalized finite element and face offsetting methods , 2010 .

[57]  Ali Fatemi,et al.  Mixed mode fatigue crack growth: A literature survey , 1996 .

[58]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[59]  R. Chang,et al.  On crack-crack interaction and coalescence in fatigue , 1982 .

[60]  Ted Belytschko,et al.  Element‐local level set method for three‐dimensional dynamic crack growth , 2009 .

[61]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[62]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .