A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain

An analysis of the sensitivity of synthetic aperture radar (SAR) backscatter (σo) to crop and soil conditions was conducted using 57 RADARSAT-2 C-band quad-polarized SAR images acquired from April to September 2009 for large fields of wheat, barley, oat, corn, onion, and alfalfa in Barrax, Spain. Preliminary results showed that the cross-polarized σHVo was particularly useful for monitoring both crop and soil conditions and was the least sensitive to differences in beam incidence angle. The greatest separability of barley, corn, and onion occurred in spring after the barley had been harvested or in the narrow time window associated with grain crop heading when corn and onion were still immature. The time series of σo offered reliable information about crop growth stage, such as jointing and heading in grain crops and leaf growth and reproduction in corn and onion. There was a positive correlation between σo and the Normalized Difference Vegetation Index for onion and corn but not for all crops, and the impact of view direction and incidence angle on the time series was minimal compared to the signal response to crop and soil conditions. Related to planning for future C-band SAR missions, we found that quad-polarization with image acquisition frequency from 3-6 days was best suited for distinguishing crop types and for monitoring crop phenology, single- or dual-polarization with an acquisition frequency of 3-6 days was sufficient for mapping crop green biomass, and single- or dual-polarization with daily image acquisition was necessary to capture rapid changes in soil moisture condition.

[1]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[2]  T. Jackson,et al.  Use of active and passive microwave remote sensing for soil moisture estimation through corn , 1996 .

[3]  Heather McNairn,et al.  The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  R. Protz,et al.  Improving crop classification through attention to the timing of airborne radar acquisitions , 1984 .

[5]  Malcolm Davidson,et al.  Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  M. Chakraborty,et al.  Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data , 2005 .

[7]  R. J. Brown,et al.  Providing crop information using RADARSAT-1 and satellite optical imagery , 2002 .

[8]  Shaun Quegan,et al.  High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  B. Brisco,et al.  The effect of soil and crop residue characteristics on polarimetric radar response , 2002 .

[10]  Sushma Panigrahy,et al.  Evaluation of RADARSAT Standard Beam data for identification of potato and rice crops in India , 1999 .

[11]  M. S. Moran,et al.  Likelihood parameter estimation for calibrating a soil moisture model using radar bakscatter , 2010 .

[12]  Thuy Le Toan,et al.  Multitemporal C-band radar measurements on wheat fields , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Laura Dente,et al.  Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Yifang Ban,et al.  Orbital effects on ERS-1 SAR temporal backscatter profiles of agricultural crops , 1997 .

[15]  Howard A. Zebker,et al.  Manual of Remote Sensing Imaging Radar Interferometry , 1997 .

[16]  C. G. J. Schotten,et al.  Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops , 1995 .

[17]  G. Schiavon,et al.  Effect of scattering mechanisms on polarimetric features of crops and trees , 1994 .

[18]  Fawwaz T. Ulaby,et al.  An evaluation of radar as a crop classifier , 1978 .

[19]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[20]  J. Paris,et al.  The effect of leaf size on the microwave backscattering by corn , 1986 .

[21]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[22]  R. J. Brown,et al.  Tillage effects on the radar backscattering coefficient of grain stubble fields , 1991 .

[23]  A. Lopes,et al.  Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images , 1989, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Aê Ke Rosenqvist Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data , 1999 .

[25]  R. J. Brown,et al.  Temporal ground-based scatterometer observations of crops in Western Canada , 1992 .

[26]  H. McNairn,et al.  Applying polarimetric radar imagery for mapping the productivity of wheat crops , 2004 .

[27]  P. Mather,et al.  Crop discrimination using multi-temporal SAR imagery , 1999 .

[28]  J. Doorenbos,et al.  Guidelines for predicting crop water requirements , 1977 .

[29]  J. Beck,et al.  An introduction to the RADARSAT-2 mission , 2004 .

[30]  Jinsong Chen,et al.  Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta , 2010 .

[31]  F. Holecz,et al.  Regional crop monitoring and discrimination based on simulated ENVISAT ASAR wide swath mode images , 2007 .

[32]  Fawwaz T. Ulaby,et al.  Identification of corn fields using multidate radar data , 1983 .

[33]  Malcolm Davidson,et al.  Crop Classification Using Short-Revisit Multitemporal SAR Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  T. F. Bush,et al.  MONITORING WHEAT GROWTH WITH RADAR. , 1976 .

[35]  Thuy Le Toan,et al.  Wheat Crop Mapping by Using ASAR AP Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  François Anctil,et al.  Relationships between Radarsat SAR data and surface moisture content of agricultural organic soils , 2003 .

[37]  Yann Kerr,et al.  Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions , 2002 .

[38]  Giles M. Foody,et al.  Crop classification from C-band polarimetric radar data , 1994 .

[39]  Malcolm Davidson,et al.  The AGRISAR Campaign: Monitoring the Vegetation Cycle using Polarimetric SAR Data , 2007 .

[40]  Urs Wegmüller,et al.  C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Fabio Del Frate,et al.  Crop classification using multiconfiguration C-band SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[43]  M. S. Moran,et al.  Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland , 2000 .

[44]  Simonetta Paloscia,et al.  A summary of experimental results to assess the contribution of SAR for mapping vegetation biomass and soil moisture , 2002 .

[45]  Claude R. Duguay,et al.  Defining the Sensitivity of Multi-Frequency and Multi-Polarized Radar Backscatter to Post-Harvest Crop Residue , 2001 .

[46]  Maurice Borgeaud,et al.  Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 , 2000, IEEE Trans. Geosci. Remote. Sens..

[47]  Krystyna A. Stankiewicz,et al.  The efficiency of crop recognition on ENVISAT ASAR images in two growing seasons , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Xavier Blaes,et al.  Efficiency of crop identification based on optical and SAR image time series , 2005 .

[49]  R. López-Urrea,et al.  Testing evapotranspiration equations using lysimeter observations in a semiarid climate , 2006 .

[50]  Wolfram Mauser,et al.  Methods and examples for remote sensing data assimilation in land surface process modeling , 2003, IEEE Trans. Geosci. Remote. Sens..

[51]  Setsu Komiyama,et al.  Cross-polarized radar backscatter from moist soil , 1978 .

[52]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[53]  M. S. Moran,et al.  Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils , 2008 .

[54]  Wenjiang Huang,et al.  Predicting winter wheat condition, grain yield and protein content using multi‐temporal EnviSat‐ASAR and Landsat TM satellite images , 2006 .

[55]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[56]  F. Ulaby,et al.  Microwave radar response to canopy moisture, leaf-area index, and dry weight of wheat, corn, and sorghum☆ , 1981 .

[57]  Robert K. Hawkins,et al.  The RADARSAT-1 imaging performance, 14 years after launch, and independent report on RADARSAT-2 image quality , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[58]  Yifang Ban,et al.  Multitemporal ERS-1 SAR data for crop classification : A sequential-masking approach , 1999 .

[59]  Nicolas Baghdadi,et al.  Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island , 2009 .

[60]  P. J. Pinter,et al.  Remote sensing for crop protection , 1993 .

[61]  Ray D. Jackson,et al.  Remote Sensing Of Vegetation Characteristics For Farm Management , 1984, Other Conferences.

[62]  Paolo Ferrazzoli,et al.  Experimental and model investigation on radar classification capability , 1999, IEEE Trans. Geosci. Remote. Sens..

[63]  Simonetta Paloscia,et al.  The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops , 2001, IEEE Trans. Geosci. Remote. Sens..

[64]  Peter Hoogeboom,et al.  Classification of Agricultural Crops in Radar Images , 1983, IEEE Transactions on Geoscience and Remote Sensing.