Outer synchronization of fractional-order complex dynamical networks

Abstract The outer synchronization between two complex dynamical networks with fractional-order chaotic nodes is studied. A new fractional-order controller for outer synchronization of complex networks is presented. And some new sufficient synchronization criteria are proposed based on the LaSalle invariance principle and the Lyapunov stability theory. This method can apply to arbitrary fractional-order complex networks in which the coupling-configuration matrix and the inner-coupling matrix are not assumed to be symmetric or irreducible. It means that this method is more general and effective. Numerical simulations of three fractional-order complex networks demonstrate the universality and the effectiveness of the proposed method.

[1]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Li Tian-Zeng,et al.  Control of fractional chaotic and hyperchaotic systems based on a fractional order controller , 2014 .

[4]  Yu Wang,et al.  Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller , 2014 .

[5]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[6]  Mohammad Mostafa Asheghan,et al.  Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection , 2011 .

[7]  R. E. Amritkar,et al.  Characterization and control of small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  S. Strogatz Exploring complex networks , 2001, Nature.

[9]  Jinde Cao,et al.  Global synchronization in arrays of delayed neural networks with constant and delayed coupling , 2006 .

[10]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[11]  Mohammad Saleh Tavazoei,et al.  Robust outer synchronization between two complex networks with fractional order dynamics. , 2011, Chaos.

[12]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[13]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[14]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[15]  Jinde Cao,et al.  Global Synchronization of Linearly Hybrid Coupled Networks with Time-Varying Delay , 2008, SIAM J. Appl. Dyn. Syst..

[16]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[17]  Tiedong Ma,et al.  Cluster synchronization in fractional-order complex dynamical networks , 2012 .

[18]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[19]  Zidong Wang,et al.  Pinning control of fractional-order weighted complex networks. , 2009, Chaos.

[20]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[21]  Sachin Bhalekar,et al.  Chaos in fractional ordered Liu system , 2010, Comput. Math. Appl..

[22]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[23]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[24]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[25]  Junwei Wang,et al.  Network synchronization in a population of star-coupled fractional nonlinear oscillators , 2010 .

[26]  Xing-yuan Wang,et al.  Dynamic analysis of the fractional-order Liu system and its synchronization. , 2007, Chaos.

[27]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[28]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[29]  Chai Wah Wu,et al.  Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  Xingyuan Wang,et al.  Chaos control of a fractional order modified coupled dynamos system , 2009 .

[31]  Wu Xiang-Jun,et al.  Outer synchronization between two different fractional-order general complex dynamical networks , 2010 .

[32]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .